2024 Annual Computer Security Applications Conference (ACSAC 2024)

Honolulu, Hawaii, USA 9-13 December 2024

Pages 1-635

IEEE Catalog Number: CFP24393-POD **ISBN:**

979-8-3315-2089-2

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP24393-POD
ISBN (Print-On-Demand):	979-8-3315-2089-2
ISBN (Online):	979-8-3315-2088-5
ISSN:	1063-9527

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2024 Annual Computer Security Applications Conference (ACSAC) ACSAC 2024

Table of Contents

Message from the Conference Chairs	xvii
Message from the Program Chairs	xix
Message from the Artifacts Evaluation Chairs	xxi
Organizing Committee	xxii
Steering Committee	xxiv
Program Committee	
Reviewers	
Artifacts Evaluation Committee	xxx
Cybersecurity Artifacts Competition and Impact Award Committee	xxxii
Test of Time Awards Committee	xxxiii
ACSAC Capture-the-Flag Organizing Committee	xxxiv
Message from the Sponsor: Applied Computer Security Associates (ACSA)	xxxv
ACSA Members	xxxvii

Generative AI (for) Security

Enhancing Database Encryption: Adaptive Measures for Digital Assets Against LLMs-Based Reverse Engineering <i>Kerou Zhou (Tsinghua University, China), Jiakang Qiu (Tsinghua University, China), Yuehua Wang (Academy of Military Science, China),</i> <i>and Xiaojun Ye (Tsinghua University, China)</i>	1
SECURE: Benchmarking Large Language Models for Cybersecurity Dipkamal Bhusal (Rochester Institute of Technology, USA), Md Tanvirul Alam (Rochester Institute of Technology, USA), Le Nguyen (Rochester Institute of Technology, USA), Ashim Mahara (RIT, USA), Zachary Lightcap (RIT, USA), Rodney Frazier (RIT, USA), Romy Fieblinger (RIT, USA), Grace Long Torales (RIT, USA), Benjamin A. Blakely (Argonne National Lab, USA), and Nidhi Rastogi (Rochester Institute of Technology (RIT), USA)	15
Not All Tokens Are Equal: Membership Inference Attacks Against Fine-Tuned Language Model Changtian Song (Wuhan University of Technology, China), Dongdong Zhao	ls 31

Changtian Song (Wuhan University of Technology, China), Dongdong Zhao (Wuhan University of Technology, China), and Jianwen Xiang (Wuhan University of Technology, China)

Stealing Watermarks of Large Language Models via Mixed Integer Programming 46
Zhaoxi Zhang (University of Technology Sydney, Australia), Xiaomei
Zhang (Griffith University, Australia), Yanjun Zhang (University of
Technology Sydney, Australia), Leo Yu Zhang (Griffith University,
Australia), Chao Chen (Royal Melbourne Institute of Technology,
Australia), Shengshan Hu (Huazhong University of Science and
Technology, Australia), Asif Gill (University of Technology Sydney,
Australia), and Shirui Pan (Griffith University, Australia)
Towards a Taxonomy of Challenges in Security Control Implementation
Md Rayhanur Rahman (North Carolina State University), Brandon
Wroblewski (North Carolina State University), Mahzabin Tamanna (North
Carolina State University), Imranur Rahman (North Carolina State
University), Andrew Anufryienak (University of North Carolina at
Charlotte), and Laurie Williams (North Carolina State University)

Virtualization and Cloud Security

 CubeVisor: A Multi-Realm Architecture Design for Running VM with ARM CCA
 ConProv: A Container-Aware Provenance System for Attack Investigation
Confidential Computing with Heterogeneous Devices at Cloud-Scale
 Hypervisor Dissociative Execution: Programming Guests for Monitoring, Management, and Security
 T-Edge: Trusted Heterogeneous Edge Computing

Web Security and Privacy

Web-Armour: Mitigating Reconnaissance and Vulnerability Scanning with Scan-Impeding Delays in Web Deployments	144
 Harnessing Multiplicity: Granular Browser Extension Fingerprinting through User Configurations Konstantinos Solomos (University of Illinois Chicago, USA), Nick Nikiforakis (Stony Brook University, USA), and Jason Polakis (University of Illinois Chicago, USA) 	161
Ready or Not, Here I Come: Characterizing the Security of Prematurely-Public Web Applications Brian Kondracki (Stony Brook University), Michael Ferdman (Stony Brook University), and Nick Nikiforakis (Stony Brook University)	175
You Only Perturb Once: Bypassing (Robust) Ad-Blockers using Universal Adversarial Perturbations Dongwon Shin (KAIST), Suyoung Lee (KAIST), Sanghyun Hong (Oregon State University), and Sooel Son (KAIST)	190
A Longitudinal Analysis of Corporate Data Portability Practices Across Industries Emmanuel Syrmoudis (Technical University of Munich, Germany), Stefan A. Mager (Independent Researcher, Germany), and Jens Grossklags (Technical University of Munich, Germany)	.207

Cyber-Physical Systems Security

Assault and Battery: Evaluating the Security of Power Conversion Systems Against Electromagnetic Injection Attacks Marcell Szakály (University of Oxford, United Kingdom), Sebastian Köhler (University of Oxford, United Kingdom), Martin Strohmeier (armasuisse, Switzerland), and Ivan Martinovic (University of Oxford, United Kingdom)	224
A Fly on the Wall - Exploiting Acoustic Side-Channels in Differential Pressure Sensors Yonatan Gizachew Achamyeleh (University of California, USA), Mohamad Habib Fakih (University of California, USA), Gabriel Garcia (University of California, USA), Anomadarshi Barua (George Mason University, USA), and Mohammad Abdullah Al Faruque (University of California, USA)	240
TRACES: TEE-Based Runtime Auditing for Commodity Embedded Systems Adam Caulfield (Rochester Institute of Technology, USA), Antonio Joia Neto (Rochester Institute of Technology, USA), Norrathep Rattanavipanon (Prince of Songkla University, Thailand), and Ivan De Oliveira Nunes (Rochester Institute of Technology, USA)	257

BioSaFe: Bioprinting Security Framework for Detecting Sabotage Attacks on Printability and Cell Viability
Passwords and Authentication
Leaky Autofill: An Empirical Study on the Privacy Threat of Password Managers' Autofill Functionality
Passwords To-Go: Investigating Multifaceted Challenges for Password Managers in the Android Ecosystem
Single Sign-On Privacy: We Still Know What You Did Last Summer
FreeAuth: Privacy-Preserving Email Ownership Authentication with Verification-Email-Free 336 Yijia Fang (Beihang University, China), Bingyu Li (Beihang University, China), Jiale Xiao (Beihang University, China), Bo Qin (Renmin University of China, China), Zhijintong Zhang (Beihang University, China), and Qianhong Wu (Beihang University, China)
Securing PUFs via a Predictive Adversarial Machine Learning System by Modeling of

Microarchitectural Attacks and Side-Channels

No Leakage Without State Change: Repurposing Configurable CPU Exceptions to Prevent	
	366
Daniel Weber (CISPA Helmholtz Center for Information Security),	
Leonard Niemann (usd AG), Lukas Gerlách (ČÍSPA Helmholtz Čenter for	
Information Security), Jan Reineke (Saarland University), and Michael	
Schwarz (CISPA Helmholtz Center for Information Security)	

R+R: Demystifying ML-Assisted Side-Channel Analysis Framework: A Case of Image Reconstruction	393
Zhiyuan Zhang (The University of Melbourne, Australia), Zhenzhi Lai (The University of Melbourne, Australia), and Udaya Parampalli (The University of Melbourne, Australia)	
Reading It Like an Open Book: Single-Trace Blind Side-Channel Attacks on Garbled Circuit Frameworks Sirui Shen (Centrum Wiskunde & Informatica, The Netherlands) and Chenglu Jin (Centrum Wiskunde & Informatica, The Netherlands)	410
SecurityHub: Electromagnetic Fingerprinting USB Peripherals using Backscatter-Assisted Commodity Hardware Si Liao (ShanghaiTech University), Huangxun Chen (HKUST (GZ)), and Zhice Yang (ShanghaiTech University)	425

Cryptocurrency and Payment Security

Breaking the Privacy Barrier: On the Feasibility of Reorganization Attacks on Ethereum Private Transactions	439
RouTEE: Secure, Scalable, and Efficient Off-Chain Payments using Trusted Execution Environments Junmo Lee (Seoul National University, Republic of Korea), Seongjun Kim (Seoul National University, Republic of Korea), Sanghyeon Park (Seoul National University, Republic of Korea), and Soo-Mook Moon (Seoul National University, Republic of Korea)	456
Practical Light Clients for Committee-Based Blockchains Frederik Armknecht (Universität Mannheim), Ghassan Karame (Ruhr-Universität Bochum), Malcom Mohamed (Ruhr-Universität Bochum), and Christiane Weis (NEC Laboratories Europe)	473
JANUS: Enhancing Asynchronous Common Subset with Trusted Hardware Liangrong Zhao (Monash University), Hans Schmiedel (Monash University), Qin Wang (CSIRO Data61, Australia), and Jiangshan Yu (University of Sydney)	488
Verifying Loot-box Probability Without Source-Code Disclosure Jing-Jie Wang (National Taiwan University), An-Jie Li (National Taiwan University), Ting-Yu Fang (National Taiwan University), and Hsu-Chun Hsiao (National Taiwan University)	505

System Security

I'll Be There for You! Perpetual Availability in the A^8 MVX System	520
André Rösti (University of California, USA), Stijn Volckaert (KU	
Leuven, Belgium), Michael Franz (University of California, USA), and	
Alexios Voulimeneas (TU Delft, The Netherlands)	

 SIDECAR: Leveraging Debugging Extensions in Commodity Processors to Secure Software	534
Rust for Linux: Understanding the Security Impact of Rust in the Linux Kernel	548
SpecCFA: Enhancing Control Flow Attestation/Auditing via Application-Aware Sub-Path Speculation	563
SECvma: Virtualization-Based Linux Kernel Protection for Arm	579

IoT and Smart Home Security

WiShield: Fine-Grained Countermeasure Against Malicious Wi-Fi Sensing in Smart Home	593
AirBugCatcher: Automated Wireless Reproduction of IoT Bugs Guoqiang Hua (SUTD, Singapore), Matheus E. Garbelini (SUTD, Singapore), and Sudipta Chattopadhyay (SUTD, Singapore)	607
VaktBLE: A Benevolent Man-in-the-Middle Bridge to Guard against Malevolent BLE Connections. Geovani Benita (SUTD), Leonardo Sestrem (SUTD), Matheus E. Garbelini (SUTD), Sudipta Chattopadhyay (SUTD), Sumei Sun (A*STAR), and Ernest Kurniawan (A*STAR)	621
BlueScream: Screaming Channels on Bluetooth Low Energy <i>Pierre Ayoub (EURECOM, France), Romain Cayre (EURECOM, France),</i> <i>Aurélien Francillon (EURECOM, France), and Clémentine Maurice (Univ.</i> <i>Lille, France)</i>	636
Eunomia: A Real-Time Privacy Compliance Firewall for Alexa Skills Javaria Ahmad (University of Central Missouri, USA), Fengjun Li (The University of Kansas, USA), Razvan Beuran (Japan Advanced Institute of Science and Technology, Japan), and Bo Luo (The University of Kansas, USA)	650

Privacy Enhancing Technologies

R+R: Towards Reliable and Generalizable Differentially Private Machine Learning	g666
Wenxuan Bao (University of Florida, USA) and Vincent Bindschaedler	
(University of Florida, UŠÅ)	

Privacy-Preserving Verifiable Neural Network Inference Service	583
R+R: Revisiting Graph Matching Attacks on Privacy-Preserving Record Linkage	599
FA-SEAL: Forensically Analyzable Symmetric Encryption for Audit Logs	716
FLUENT: A Tool for Efficient Mixed-Protocol Semi-Private Function Evaluation	733

Machine Learning Security I: Federated Learning

FedCAP: Robust Federated Learning via Customized Aggregation and Personalization
Link Inference Attacks in Vertical Federated Graph Learning
Efficient Secure Aggregation for Privacy-Preserving Federated Machine Learning
Adversarially Guided Stateful Defense Against Backdoor Attacks in Federated Deep Learning 79 Hassan Ali (UNSW Sydney), Surya Nepal (Data61 CSIRO), Salil S. Kanhere

(Data61 CSIRO), and Sanjay Jha (Data61 CSIRO)

Lightweight Secure Aggregation for Personalized Federated Learning with Backdoor

Resistance	8	10
		-

Tingyu Fan (Chinese Academy of Sciences, China; Key Laboratory of
Cyberspace Security Defense, China; University of Chinese Academy of
Sciences, China), Xiaojun Chen (Chinese Academy of Sciences, China;
Key Laboratory of Cyberspace Security Defense, China; University of
Chinese Academy of Sciences, China), Ye Dong (Singapore University of
Technology and Design, Singapore), Xudong Chen (Chinese Academy of
Sciences, China; Key Laboratory of Cyberspace Security Defense,
China), Yuexin Xuan (Chinese Academy of Sciences, China; Key
Laboratory of Cyberspace Security Defense, China; University of
Chinese Academy of Sciences, China), and Weizhan Jing (Chinese Academy
of Sciences, China; Key Laboratory of Cyberspace Security Defense,
China; University of Chinese Academy of Sciences, China)

Malware and Intrusion Detection

 DEEPCAPA: Identifying Malicious Capabilities in Windows Malware	326
R+R: Matrioska: A User-Centric Defense Against Virtualization-Based Repackaging Malware on Android	343
IoC Stalker: Early Detection of Indicators of Compromise	57
Madeline: Continuous and Low-Cost Monitoring with Graph-Free Representations to Combat Cyber Threats	374
A Security Alert Investigation Tool Supporting Tier 1 Analysts in Contextualizing and Understanding Network Security Events	390

Machine Learning Security II: Backdoors & Attacks

Evil from Within: Machine Learning Backdoors Through Dormant Hardware Trojans	06
Exploring Inherent Backdoors in Deep Learning Models	23
(Purdue University), Zhenting Wang (Rutgers University), Shiqing Ma (University of Massachusetts Amherst), Shengwei An (Purdue	
University), Yingqi Liu (Microsoft), Guangyu Shen (Purdue University),	
Zhuo Zhang (Purdue University), Yunshu Mao (Purdue University), and Xiangyu Zhang (Purdue University)	
On the Credibility of Backdoor Attacks Against Object Detectors in the Physical World	40
 Physical ID-Transfer Attacks against Multi-Object Tracking via Adversarial Trajectory	57
Model-Manipulation Attacks Against Black-Box Explanations 97 Achyut Hegde (Karlsruhe Institute of Technology, Germany), Maximilian 97 Noppel (Karlsruhe Institute of Technology, Germany), and Christian 97 Wressnegger (Karlsruhe Institute of Technology, Germany) 97	74

(Autonomous) Vehicle Security

Moiré Injection Attack (MIA): Compromising Autonomous Vehicle Safety via Exploiting Camera's Color Filter Array (CFA) to Inject Hidden Traffic Sign Qi Xia (The University of Texas at San Antonio, USA) and Qian Chen (The University of Texas at San Antonio, USA)	. 988
Leveraging Intensity as a New Feature to Detect Physical Adversarial Attacks Against LiDARs	1002
Yeji Park (Korea University, Republic of Korea), Hyunsu Cho (Korea	
University, Republic of Korea), Dong Hoon Lee (Korea University,	
Republic of Korea), and Wonsuk Choi (Korea University, Republic of	
Korea)	

VIMU: Effective Physics-Based Realtime Detection and Recovery against Stealthy Attacks on UAVs	15
Yunbo Wang (Xidian University, China), Cong Sun (Xidian University, China), Qiaosen Liu (Xidian University, China), Bingnan Su (Xidian University, China), Zongxu Zhang (Xidian University, China), Michael Norris (The Pennsylvania State University, USA), Gang Tan (The Pennsylvania State University, USA), and Jianfeng Ma (Xidian University, China)	
Assessing UAV Sensor Spoofing: More Than A GNSS Problem	32
Application Security	
R+R: Security Vulnerability Dataset Quality is Critical	47
 BinHunter: A Fine-Grained Graph Representation for Localizing Vulnerabilities in Binary Executables	62
 CryptoPyt: Unraveling Python Cryptographic APIs Misuse with Precise Static Taint Analysis 102 Xiangxin Guo (University of Science and Technology of China, China), Shijie Jia (Institute of Information Engineering, China), Jingqiang Lin (University of Science and Technology of China, China), Yuan Ma (Institute of Information Engineering, China), Fangyu Zheng (University of Chinese Academy of Sciences, China), Guangzheng Li (University of Science and Technology of China, China), Bowen Xu (Ningbo University, China), Yueqiang Cheng (NIO, China), and Kailiang Ji (NIO, China) 	75
R+R: A Systematic Study of Cryptographic Function Identification Approaches in Binaries 109 Yongming Fan (Purdue University), Priyam Biswas (Intel), and Christina Garman (Purdue University)	92
Manifest Problems: Analyzing Code Transparency for Android Application Bundles	09

Network Security

Dissecting Open Edge Computing Platforms: Ecosystem, Usage, and Security Risks
Assessing the Silent Frontlines: Exploring the Impact of DDoS Hacktivism in the Russo-Ukrainian War
Robust Device Authentication in Multi-Node Networks: ML-Assisted Hybrid PLA Exploiting Hardware Impairments
CloudCover: Enforcement of Multi-Hop Network Connections in Microservice Deployments1186 Dalton A. Brucker-Hahn (Sandia National Laboratories, USA), Wang Feng (University of North Texas, USA), Shanchao Li (University of North Texas, USA), Matthew Petillo (University of Kansas, USA), Alexandru G. Bardas (University of Kansas, USA), Drew Davidson (University of Kansas, USA), and Yuede Ji (University of Texas at Arlington, USA)

Machine Learning Security III: Potpourri

TILE: Input Structure Optimization for Neural Networks to Accelerate Secure Inference Yizhou Feng (Old Dominion University, USA), Qiao Zhang (Chongqing University, China), Yifei Cai (Old Dominion University, USA), Hongyi Wu (University of Arizona, USA), and Chunsheng Xin (Old Dominion University, USA)	1203
R+R: Understanding Hyperparameter Effects in DP-SGD Felix Morsbach (Karlsruhe Institute of Technology, Germany), Jan Reubold (Karlsruhe Institute of Technology, Germany), and Thorsten Strufe (Karlsruhe Institute of Technology, Germany)	1217
CIGA: Detecting Adversarial Samples via Critical Inference Graph Analysis Fei Zhang (National University of Defense Technology, China; Key Laboratory of Advanced Microprocessor Chips and Systems, China), Zhe Li (National University of Defense Technology, China; Key Laboratory of Advanced Microprocessor Chips and Systems, China), Yahang Hu (National University of Defense Technology, China; Key Laboratory of Advanced Microprocessor Chips and Systems, China), and Yaohua Wang (National University of Defense Technology, China; Key Laboratory of Advanced Microprocessor Chips and Systems, China), and Yaohua Wang (National University of Defense Technology, China; Key Laboratory of Advanced Microprocessor Chips and Systems, China)	1231

Shihua Sun (Virginia Tech, USA), Kenechukwu Nwodo (Virginia Tech, USA), Shridatt Sugrim (Kryptowire Labs, USA), Angelos Stavrou (Virginia Tech, USA; Kryptowire Labs, USA), and Haining Wang (Virginia Tech, USA)

Author Index