2024 IEEE 33rd Asian Test Symposium (ATS 2024)

Ahmedabad, India 17-20 December 2024

IEEE Catalog Number: CFP24067-POD ISBN: 979-8-3315-2917-8

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP24067-POD

 ISBN (Print-On-Demand):
 979-8-3315-2917-8

 ISBN (Online):
 979-8-3315-2916-1

ISSN: 1081-7735

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2024 IEEE 33rd Asian Test Symposium (ATS)

Table of Contents

Message from the Chairs Steering Committee Organizing Committee Tutorials Keynotes Sponsors

MTCX : Ultra-high Throughput TRNG Based on Mesh topology of Coupled-XOR...1

lu yingchun¹, Enpu Xu¹, Huaguo Liang¹, Cuiyun Jiang¹, Lixiang Ma², Liang Yao²

¹ Hefei University of Technology

Trojan Horse Detection for RISC-V Cores Using Cross-Auditing...5 Wei-Po Huang¹, Shi-Yu Huang¹, Chi-Kang Chen², Siang-ChengHu Huang¹
¹National Tsing Hua University
²TESDA

An FPGA-Based Emulation Platform for Functional Safety Verification in Automotive SoC Systems...11

Yutao Sun¹, Wang Zhijun¹, Zean huang¹, Liping Liang¹
¹Beijing University of Posts and Telecommunications

Effective Runtime Fault Detection for DNN Accelerators...17 Wei-Kai Liu¹, Jonti Talukdar², Krishnendu Chakrabarty³, Benjamin Tan⁴ ¹Duke University

²NVIDIA

³Arizona State University

⁴University of Calgary

Reliability Enhancement of Memristor-Based Neural Networks with Fault-Injected Training...23

Md. Sihabul Islam¹, Ryota Eguchi¹, Michiko Inoue¹
¹Nara Institute of Science and Technology

Methods and Apparatus to Support Multiple Synchronous Clocks with a Single Clock Mesh...29

Shubham Shrivastava¹, Sainath Yeshagol¹, Harry Linzer¹ ¹Marvell India Pvt. Ltd.

A Formal Approach and Testing Process for Failure Modes in Intelligent Algorithms...33

Nishan Xie¹, Hongping Ren², Rui Li², Qian Dong², Lingzhong Meng²

¹University of Chinese Academy of Sciences

²Institute of Software Chinese Academy of Science

² Anhui Institute of Information Technology

Boosting Self-Repair Workflow with Brainstorming for Code Generation...39 Zhaoming Jin¹, Zhixin Shi¹

¹Institute of Information Engineering, Chinese Academy of Sciences

Low-Cost Generation of RF Test Stimuli from Baseband Digital Signals...45 Kamilia Tahraoui¹, Florence Azais¹ ¹LIRMM, Univ. Montpellier, CNRS

A Novel Multi-Scope Characterization Method for Automotive LPDDR4 Controller...51

Vasavi Ghanta¹, Vinodh Rakesh¹

¹Infineon Technologies

Automotive Microcontroller Characterization Hardware – Challenges and Solutions...58

Jithesh K¹, Vinodh Rakesh¹, Prince Thachil¹, Timmy Peter¹, Vasavi Ghant¹ Infineon Technologies Semiconductor India Private Limited

High Performance Advanced Fault Model Diagnosis...64

Vaibhav Mishra¹, Bharath Nandakumar¹, Sameer Chillarige¹
¹Cadence Design Systems

Carbon Quantum Dot Fluorescent Stickers for Biochip Authentication...71 Navajit Baban¹, Mohammed Abdelhameed¹, Mahmoud Elbeh¹, Khalil Ramadi¹, Yong Ak Song¹, Sukanta Bhattacharjee², Ramesh Karri¹, Krishnendu Chakrabarty³

¹New York University Abu Dhabi

²IIT Guwahati

³Arizona State University

Hacking the Fabric: Targeting Partial Reconfiguration for Fault Injection in FPGA Fabrics...77

Jayeeta Chaudhuri¹, Hassan Nassar², Dennis Gnad², Joerg Henkel², Mehdi Tahoori², Krishnendu Chakrabartv¹

¹Arizona State University

²Karlsruhe Institute of Technology

Post-silicon Trace Signal Selection Using Genetic Algorithm...83

Hanxu Feng¹, Yuanhang Bu¹, Jing Zhou¹, Shuo Wang¹, Lei Chen¹, Zhuoli Wang¹, ¹Beijing Microelectronics Technology Institute

Preferential Fault-Tolerant based TF32 Floating Point Adder for Mission Critical Systems...87

Raghavendra Kumar Sakali¹, Noor Mahammad Sk²

¹Sri Sivasubramaniya Nadar College of Engineering, India

²Indian Institute of Information Technology Design and Manufacturing (IIITDM) Kancheepuram, India

Fault Tolerance in Stochastic Circuits for Recurrent Sequential Neural Networks...92

Roshwin Sengupta¹, Ilia Polian¹, John P. Hayes²

¹University of Stuttgart

²University of Michigan

Optimized Detection of Marginal Defects in Standard Cells Using Unsupervised Learning...98

Karthik Pandaram¹, Hussam Amrouch², Ilia Polian¹ (University of Stuttgart) ¹University of Stuttgart

²Techincal University of Munich

Power Aware test methodology for Test Power hungry complex SoCs...104 Piyushkumar Chaniyara¹, Pervez Garg¹

¹Texas Instruments, India

Optimizing LBIST Run Time for a Safety Critical SoC: A Practical Approach...108 Sujeet Maurya¹, Gedupudi Bharghav Ram²

¹Texas Instruments, India

²MNIT Jaipur, India

A Complete Security Protocol to Safeguard IJTAG Architecture...113

Niranjana Ithal¹, Adharsh Natarajan¹, Sudeendra Kumar¹, P Anurup¹ ¹PES University, Bangalore, India

Automated System for Testing and Result Analysis for Payload Controller...119 Anirban Paul¹, Jimit Gadhia¹, Aashish Agrawal¹, Ashok Kumar¹, Ashutosh Mishra¹, Sandip Paul¹, Ashish Misra¹, Sanjeev Mehta¹, Anuj Srivastava¹, ¹Space Applications Centre

Large Language Model Driven Logic Locking: A Generative Approach to Secure IC Design...125

Jugal Gandhi¹, Diksha Shekhawat², M. Santosh¹, Jaya Dofe², Jai Gopal Pandey¹, Gandhi¹ ¹Academy of Scientific and Innovative Research ²CSUF

A Novel TSV Repair Framework for 3-D Stacked ICs...129

Dr. Tanusree Kaibartta¹, Debesh K. Das²

1IIT DHANBAD

²Jadavpur University Kolkatta

SAMURAI: Safeguarding against Malicious Usage and Resilience of AI...135 Habibur Rahaman¹, Atri Chatterjee¹, Swarup Bhunia¹ ¹University of Florida

LATENT: Leveraging Automated Test Pattern Generation for Hardware Trojan Detection...141

Sudipta Paria¹, Pravin Gaikwad¹, Aritra Dasgupta¹, Swarup Bhunia¹ ¹University of Florida

FORTUNE: A Negative Memory Overhead Hardware-Agnostic Fault TOleRance TechniqUe in DNNs...147

Samira Nazari¹, Mahdi Taheri², Ali Azarpeyvand¹, Masoud Daneshtalab³, Christian Herglotz⁴, Mohsen Afsharchi⁵, Tara Ghasempouri³, Maksim Jenihhin³

¹University of Zanjan

²Tallinn university of technology

³Taltech

⁴Brandenburgische-Technische Universität Cottbus-Senftenberg ⁵ZNU

PATROL: An Evolutionary Approach to Automatic Test Pattern Generation for Hardware Trojan Detection Leveraging PSO-GA Hybrid Techniques...153 mostafa hosseini¹, Ali Azarpeyvand¹, Tara Ghasempouri²

¹University of Zanjan

Design and Simulation of Fault Detection Technique for NAND Based Memory Array...159

JAMUNA S¹, Murali Bharadwaja¹, Kishore Kumar Kalluri¹, Madhura R¹ ¹Dayananda Sagar College of Engineering, India

A Testability Improvement Method of Combinational Circuits Based on the SDC Conditions...163

Yang Zeng^{1,} Xiaole Cui¹

¹Peking University Shenzhen Graduate School

RTL design of 16-bit RISC Processor Using Vedic Mathematics...169 Nikitha S¹, Peram Varshitha¹, Niveditha K M¹, Mayuri Bhat K¹, Madhura R¹ ¹Dayananda Sagar college of Engineering

Improving At-Speed Test Coverage without compromising Test Time and reducing Test Cost in multi-partition SCAN Design...173

Jayesh Popat¹, Ramesh Devani¹, Jay Gohil¹

¹Microcircuits Innovations Pvt Ltd

Enhancing SRAM Array Security Through Transmission Gate-Based Logic Obfuscation...178

Bhavin Bhavani¹, Anupam Mathur¹, Sreeja Rajendran¹, Vinay Palaparthy¹, Yash Agrawal¹

¹Dhirubhai Ambani Institute of Information and Communication Technology

A Novel Differential 12T SRAM Bit-cell Structure with Improved SNM in 16nm FinFET Technology...182

Jay Gohil¹, Ramesh Devani¹, Jayesh Popat¹

¹Microcircuits Innovations Pvt Ltd

Testing Method for Embedded UltraRAM in Field Programmable Gate Arrays...189

Jiaqi Guo¹

¹School of Microelectronics, Fudan University, Shanghai

Design, Implementation and Characterization of a Novel Robust-by-Construction Arbiter PUF Circuit on Xilinx FPGAs...195

Sreekanth Balijabudda Venkata $^{\rm l}$, Indrajit Chakrabarti $^{\rm l}$, Rajat Subhra Chakraborty $^{\rm l}$ $^{\rm l}$ IIT Kharagpur

MEMFD: A Multi-EDT Multi-Fault Scan Chain Diagnosis Methodology with Deep Learning...201

Saman Aijaz Siddiqui¹, Uzair Ruhulamin Patel¹, Utsav Jana², Binod Kumar¹

¹ IIT Jodhpur

² SUTD

²Tallinn University of Technology

SFCM-HT: Hardware Trojan Detection Based on Sequence Features with a Combination Model...207

Li Zhenghao¹, Yang Zhang¹, Xing Hu¹, Jialong Song¹, Shaoqing Li¹, Bin Liang¹ ¹National University of Défense Technology

Accelerating Sequential Circuit Simulation with Spatial Locality Enhancement and Redundant Event Reduction...213

Jiaping Tang¹, Jing Ye¹, Huawei Li¹, Xiaowei Li¹

¹Institute of Computing Technology, Chinese Academy of Sciences

Improving Self-Fault-Tolerance Capability of Memristor Crossbar Using a Weight-Sharing Approach...219

DEV YADAV¹, Phrangboklang Lyngton Thangkhiew², F Lalchhandama³, Kamalika Datta⁴, Rolf Drechsler⁵, Indranil Sengupta⁶

¹National Institute of Technology Rourkela

²Indian Institute of Technology Guwahati

³Jawaharlal Nehru University

4DFKI

⁵University of Bremen, Germany

⁶IIT Kharagpur

LLM-aided Front-End Design Framework for Early Development of Verified RTLs...225

Vyom Gupta¹, Abhishek Yadav², Masahiro Fujita³, Binod Kumar²

¹Indian Institute of Information Technology Allahabad

²IIT-JODHPUR

³The University of Tokyo

ML Based Diagnosis for Fault Location in Digital Circuits...231

Habibur Rahaman¹, Sudip Ghosh², Subhajit Chatterjee²

¹Indian Institute of Technology, Kharagpur

²Indian Institute of Engineering Science and Technology, Shibpur

Evaluating Different Fault Injection Abstractions on the Assessment of DNN SW Hardening Strategies...237

Giuseppe Esposito¹, Matteo Sonza Reorda¹, Juan-David Guerrero-Balaguera¹, Josie-Esteban Rodriguez-Condia¹

¹Politecnico di Torino

Towards Formal Verification for MAC-based In-Memory Computing...243 Fatemeh Shirinzadeh¹, Kamalika Datta², Saeideh Shirinzadeh¹, Abhoy Kole¹, Rolf Drechsler²

¹DFKI

²University of Bremen, Germany

RTL Agent: An Agent-Based Approach for Functionally Correct HDL Generation via LLMs...249

Sriram Ranga¹, Rui Mao¹, Debjyoti Bhattacharjee², Erik Cambria¹, Anupam Chattopdhyay¹

¹Nanyang Technological University

²Imec

LLMs for Hardware Verification: Frameworks, Techniques, and Future Directions...255

Khushboo Qayyum¹, Sallar Ahmadi-Pour², Chandan Kumar Jha², Muhammad Hassan², Rolf Drechsler²

¹DFKI GmbH

²University of Bremen

Security Concerns of Machine Learning Hardware...261 Chandan Karfa¹, Nilotpola Sarma¹, E Bhabani Eswar Reddy¹ ¹IIT Guwahati

LLM vs HLS for RTL Code Generation: Friend or Foe?...267 Chandan Karfa¹, Sutirtha Bhattacharjee²
¹IIT Guwahati

²Indian Association for the Cultivation of Science

Finite Element Analysis (FEA) Based Design Optimization of Ultrastable, High Finesse Optical Cavities for Portable Optical Atomic Clock Applications...273

Arijit Sharma¹, Himanshu Miriyala¹, Rishabh Pal¹ ¹Indian Institute of Technology Tirupati

Experimental Realization of Quantum Memory and EPS-QKD...279 Kapil Jaiswal¹ Quantum AI Global

Quantum Key Distribution-Based Framework for Securing Encrypted Communications in Address Resolution Protocol Packet Capture...285 Amlan Chakrabarti¹
¹University of Calcutta

The Future is Hybrid: Next Generation Data Structures for Formal Verification...291
Rolf Drechsler¹, Christina Plump², Martha Schnieber¹
¹University of Bremen, Germany
²DFKI GmbH

Security Vulnerabilities in AI Hardware: Threats and Countermeasures...297 Rijoy Mukherjee¹, Sneha Swaroopa¹, Subhra Chakraborty¹
¹IIT Kharagpur

Secure AI Systems: Emerging Threats and Defense Mechanisms...303 Habibur Rahaman¹, Atri Chatterjee¹, Swarup Bhunia¹ ¹University of Florida

Fault Testing in AI-Accelerators: A Review...309 Hafizur Rahaman¹, Bhargab B. Bhattacharya², Debesh K. Das³, Subhajit Chatterjee¹ ¹ Indian Institute of Engineering Science and Technology, Shibpur ²ISI, India ³Jadavpur University Kolkatta