2024 2nd China Power Supply Society Electromagnetic Compatibility Conference (CPEMC 2024)

Hangzhou, China 16-18 August 2024

IEEE Catalog Number: CFP240D0-POD **ISBN:**

979-8-3315-0956-9

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP240D0-POD
ISBN (Print-On-Demand):	979-8-3315-0956-9
ISBN (Online):	979-8-3315-0955-2

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2024 2nd China Power Supply Society Electromagnetic Compatibility Conference (CPEMC) CPEMC 2024

Table of Contents

Prefacexv Conference Committeexvi
CPEMC 2024
Construction Method of Conducted EMI Prediction Model for High Power Electric Drive Systems
 Research and Analysis of the Influence of Wiring Structure on Radiation in Electric Drive System
Research on Electromagnetic Compatibility Test of Bearing Voltage in High Voltage System
 Frequency Calculation and Selection for Nonlinear Parity-Time Symmetric Wireless Power System Considering Electromagnetic Compatibility

Analysis of the Influence of Parasitic Capacitances on Common-Mode EMI in Double Sided	•
 Sijia Liu (Huazhong University of Science and Technology, China), Yifan Zhang (Huazhong University of Science and Technology, China), Yiyang Yan (Huazhong University of Science and Technology, China), Jianwei Lv (Huazhong University of Science and Technology, China), Heng Zhang (Huazhong University of Science and Technology, China), Zexiang Zheng (Huazhong University of Science and Technology, China), Jiaxin Liu (Huazhong University of Science and Technology, China), Jiaxin Liu (Huazhong University of Science and Technology, China), Jiaxin Liu (Huazhong University of Science and Technology, China), Gene (Huazhong University of Science and Technology, China), Chen (Huazhong University of Science and Technology, China), Yiaxin Liu (Huazhong University of Science and Technology, China), Chen (Huazhong University of Science and Technology, China), Chen (Huazhong University of Science and Technology, China), Yong Kang (Huazhong University of Science and Technology, China), Yong Kang (Wuhan Ship Communication Research Institute, China), and Wei Liu (Wuhan Ship Communication Research Institute, China) 	20
 Analysis of the Impact of Long-Term Service of Inverter Devices on Electromagnetic Compatibility Ruiheng Zhang (Huazhong University of Science and Technology, China), Xuejun Pei (Huazhong University of Science and Technology, China), Jin Meng (Naval University of Engineering, China), Hongming Fan (Huazhong University of Science and Technology, China), Peng Zhou (Huazhong University of Science and Technology, China), and Yuzhang Yuan (Naval University of Engineering, China) 	26
 Modeling and Simulation Method of Complex Cables in Aircraft Under High-Intensity Radiation Fields	31
Complex Permeability Determination for EE Core Based on Flexible PCB Fixture and Magnetic Flux Path Length Analysis	34
Radiated Susceptibility Testing and IEMI Reinforcement of Unmanned Aerial Vehicles Against Motor-Related Failures <i>Huamin Jie (Nanyang Technological University, Singapore), Mingke Yang</i> <i>(Nanyang Technological University, Singapore), Zhen Tao (Nanyang</i> <i>Technological University, Singapore), Zhenyu Zhao (National University</i> <i>of Singapore, Singapore), and Kye Yak See (Nanyang Technological</i> <i>University, Singapore)</i>	39

Inversion Analysis of Aircraft Surface Charge Distribution Based on BP Neural Network
Research on S-Parameter Test Method for High and Low Voltage Coupling
 Two-Dimensional Winding Loss Modeling of Planar Inductors Considering the Effect of Air-Gap Diffusion Flux
 The Influence of Edge Effects on the Evaluation and Optimization of Planar Transformer Winding Loss
Research on the Transformer Lightweight Technology of Isolated Bidirectional DC/DC Converter for Aerospace
Calculation Model of Leakage Inductance of Planar Transformer based on Image Method
Plane Wave Excited Coaxial Cables Coupling Model and Simulation
Design of a Chaotic Carrier Frequency Modulation Switched-Mode Power Supply Controller Based on FPGA

 A High Energy Density Hybrid EMI Filter based on Improved MCMC
 Harmonic Current Correction for Common Mode Voltage Reduction and Narrow Pulse Elimination Method in DC-AC Matrix Converter
Study on Measurement of Scattering Parameters of Non-Coaxial Interface Devices
Human Electromagnetic Safety Assessment of AC Cables for Motor Drive System of Electric Vehicle
Design of T-Type CM EMI Filter Based on Planar Electromagnetic Integration
Research on Strong Electromagnetic Environment Coupling Effect of Front-end Devices in RF System
A Least Squares Fitting-Based Method for Assessing the HPM Radiation Effects
Modeling of EMI Current in Clamping Wires of Medium-Voltage H-Bridge Submodule
Measurement and Analysis of Battery Alternating-Current Impedance by Vector Network Analyzer 127 Jie Zhang (CATARC New Energy Vehicle Test Center (Tianjin) Co., Ltd., 127 China), Xuan Feng (CATARC New Energy Vehicle Test Center (Tianjin) Co., Ltd., Co., Ltd., China), and Xinjie Gao (Beijing Gaobo EMC Technology Co., China)

Modeling for Conducted Electromagnetic Interference of High Voltage Motor Drive System of Electric Vehicle 1 Ange Liu (Beijing Institute of Technology, China), Li Zhai (Beijing Institute of Technology, China), and Shuliang Wang (Beijing Institute of Technology, China)	131
 Modeling and Design of Active Filter for EMI Cancellation in High Voltage Power Supply of Motor Controller for Electric Vehicle	137
Multi-Load WPT System for Battery Charging with Overshoot Suppression During Constant-Voltage and Constant-Current Modes Switching	143
 Simulation and Suppression of the Voltage between Negative Line and Ground in DC Traction Power Supply System with Special Return Rail	148
Electromagnetic Integrated Design of EMI Filters based on Flexible Multilayer Foils	152
 Modeling of High Voltage to Low Voltage Crosstalk Coupling Paths in Electric Vehicle Motor Drive Systems Binxiang Sun (Beijing Institute of Technology, China), Li Zhai (Beijing Institute of Technology, China), Shuangjie Yang (Beijing Institute of Technology, China), Shuliang Wang (Beijing Institute of Technology, China), Jianghaoyu Yan (Beijing Institute of Technology, China), and Ange Liu (Beijing Institute of Technology, China) 	158
Design and Optimization of Planar Matrix Integrated Magnetic Components	164
Investigation on Correlation of Shielding Effectiveness of Enclosures with Aperture Between Reverberation Chamber and OATS Method	170
Research on an Active Stealth Method Based on the Technique of Multi-Source Pair Cancellation	175

Research on Interference Cancellation Algorithm Based on Multipath Channel Modeling	0
Research on Mechanism and Suppression Strategy of Radar Intermittent Sampling and	
Forwarding Jamming 18 Shuo Lei (Naval Nniversity of Engineering, China), Hengfeng Wang (Naval University Of Engineering, China), Jundi Wang (Naval University Of Engineering, China), Wantian Wang (Naval University Of Engineering, China), Zhi Huang (Naval University Of Engineering, China), Zhi Huang (Naval University Of Engineering, China), Zhang (Naval University Of Engineering, China)	6
Protection Design and Device Selection of Power Line Under Nanosecond Fast Risingtime	_
Pulse	2
Modeling Method Of Conducted EMI In DC/DC Switching Power Supply Module	7
Analysis and Modeling of Equivalent Circuit of GDT under Fast Rising Time EMP	3
An Inductive Wireless Power Transmission System Based on Capacitive Feedback Fractional-Order High-Frequency Oscillator	18
Intelligent Recognition Method of Radar Pulse Signal Based on Deep SVDD	3
 Structural Design of Carbon-Based Filler in Polymer Matrix Composites for Electromagnetic Interference Shielding: A Mini Review	.8

Equivalent Injection Test Method of Continuous Wave High-Intensity Field Electromagnetic Radiation Damage Effect of RF Front-end Receiving Component under Port Linear Response	221
Xinfu Lu (Army Engineering University Shijiazhuang Campus, China), Guanghui Wei (Army Engineering University Shijiazhuang Campus, China), Xiaodong Pan (Army Engineering University Shijiazhuang Campus, China), and Haojiang Wan (Army Engineering University Shijiazhuang Campus, China)	. 221
Electromagnetic Pulse Source for Cable Injection Xing Zhou (Army Engineering University, China), Pingping Wang (Army Engineering University, China), Min Zhao (Army Engineering University, China), and Yan Wang (Army Engineering University, China)	226
An Efficient Local Time-Stepping Scheme for Discontinuous Galerkin Multi-Scale Modeling Chaoxin Chen (Zhejiang University, China) and Qiwei Zhan (Zhejiang University, China)	. 231
 Experimental Study on the Interrelationships of VFTO, TEV, and EMF in Ultra-High Voltage Substations Jun Zhao (China Electric Power Research Institute, China), Renbin Su (Central China Branch of State Grid, China), Yuan Ni (China Electric Power Research Institute, China), Zihan Teng (State Grid Hubei Electric Power Research Institute, China), Zhenghai Liao (China Electric Power Research Institute, China), and Jilai Xu (China Electric Power Research Institute, China) 	. 233
Parameter Identification of MC-WPT System based on Differential Evolution Algorithm XueQi Zhang (Fuzhou University, High-frequency Power Magnetics and Power Conversion Lab, China), XuJian Shu (Fuzhou University, High-frequency Power Magnetics and Power Conversion Lab, China), and YanWei Jiang (Fuzhou University, High-frequency Power Magnetics and Power Conversion Lab, China)	240
A Failure Risk Assessment Method of Secondary System in Lightning Electromagnetic Pulse Environment of Island Microgrid Wanyi Lai (Zhejiang University, China), Shufeng Dong (Zhejiang University, China), and Xinyi Zheng (Zhejiang University, China)	. 246
Orthogonal Dual-Channel based Wireless Charging System with Free Rotation and Simultaneous Data Transmission Hao Liu (Zhejiang University, China), Junhao Chang (Zhejiang University, China), Zhenjie Li (Northeast Forestry University, China), and Henglin Chen (Zhejiang University, China)	. 253
Design Method of Magnetic Coupling Mechanism for UAV Wireless Charging System with High Efficiency and Anti-Offset Ability Zheng Xie (CSG Guangdong Power Grid Corporation, China), Qing Wang (CSG Guangdong Power Grid Corporation, China), Bo Wen (CSG Guangdong Power Grid Corporation, China), Jiahao Zhao (South China University of Technology, China), Wenxun Xiao (South China University of Technology, China), and Bo Zhang (South China University of Technology, China)	258

 Passive Shielding Method for Leakage Magnetic Field in WPT System for Electric Vehicle Based on Induction Multi-Frequency Resonance	54
 Improved Calibration Technique for Two-Probe Setup to Reduce Measurement Errors	59
 PT-Symmetric Wireless Power Transfer System Based on Triple Transmitting Coils	73
 Evaluation of Failure Threshold of Digital Circuit Under Different Electromagnetic Disturbance	79
Modeling of Common-Mode EMI from an All-in-one Motor Drive Module of Electric Vehicle 28 Zhaocheng Zhong (Zhejiang University, China), Zili Zhu (Zhejiang University, China), Jing Sun (Zhejiang University, China), and Henglin Chen (Zhejiang University, China)	34
 Electromagnetic Compatibility Analysis and Optimization of a Resolver for Measuring the Angular Displacement in High-Power Synchronous Motor	39
 Analytical Modeling and Analysis of Conducted Electromagnetic Interference of AC-DC Converter based on New Admittance Matrix	93

Logistic-Chebyshev Cascaded Chaotic Space Vector Pulse Width Modulation for Common-Mode EMI Suppression in Motor Drive System
Design of Hybrid EMI Filter with Output Voltage Enhancement Structure
Design and Realization of Three-Phase EMI Noise Separator
The Numerical Modeling and Analysis of Conducted EMI for Four-Switch Buck-Boost Converter . 316 Yongqi Huo (Xi'an JiaoTong University, China), Wenjie Chen (Xi'an JiaoTong University, China), Hongpeng Wang (Xi'an JiaoTong University, China), Chufan Zhou (Xi'an JiaoTong University, China), Huibin Wu (Xi'an JiaoTong University, China), and Wenxia Chen (Xi'an JiaoTong University, China)
Optimized Design of EMI Filter Based on Electric Vehicle Charging Station Power Module
Design of Active EMI Filter Combining Feedforward and Feedback Control
Improved High-Pass Filter for Measuring High Frequency Common-Mode Voltage with Passive Probe
Active X-Y Capacitors Based Hybrid EMI Filter Design
A Dead Time Compensation Method of Constant Common Mode Voltage CPS SPWM for MMC 343 Zuoxing Wang (Beijing Jiaotong University, China), Hong Li (Beijing Jiaotong University, China), Yanjun Li (Beijing Jiaotong University, China), Daozhen He (Beijing Jiaotong University, China), and Zhichang Yang (State Grid Smart Grid Research Institute, China)

Prediction of CM Conducted EMI Noise of High Frequency Class E Resonant Flyback Converters Based on Air-Core Transformers
(Harbin Institute of Technology, China), Shimin Zhou (Harbin Institute of Technology, China), Yi Cheng (Harbin Institute of Technology, China), Yijie Wang (Harbin Institute of Technology, China), and Dianguo Xu (Harbin Institute of Technology, China)
Variable Dead Zone Pulse Width Modulation to Reduce Conducted Electromagnetic Interference 354 Hui Liu (Huazhong University of Science and Technology, China), Dong Jiang (Huazhong University of Science and Technology, China), and She Yan (Huazhong University of Science and Technology, China)
Measurement and Modeling of Wide-Range Magnetic Core Losses under PWM Excitation
 Distributed Modeling of Power Inductors and Analysis of Winding Method on EMI based on Vienna PFCs
Improved Radiated EMI Analysis Model Based on Modeling of Spatial Electromagnetic Field 369 Rui Cheng (Xi'an JiaoTong University, China), Wenjie Chen (Xi'an JiaoTong University, China), Wenxia Chen (Xi'an JiaoTong University, China), and Pengyuan Ren (Xi'an JiaoTong University, China)
The Design and Selection of DC-Link Decoupling Capacitors in High-Power Full SiC Voltage 373 Source Converter 373 Jianbo Luo (CRRC Zhuzhou Institute Co., Ltd., China), Xuerong Li (CRRC 373 Zhuzhou Institute Co., Ltd., China), Deyong Yang (CRRC Zhuzhou 1nstitute Co., Ltd., China), Neliang Yuan (CRRC Zhuzhou Institute Co., Ltd., China), Keliang Yuan (CRRC Zhuzhou Institute Co., Ltd., China), and Tao Wang (CRRC Zhuzhou Institute Co., Ltd., China)