12th International on Molten Slags, Fluxes and Salts (MOLTEN2024)

Supporting the Transition to Sustainable Technologies

Brisbane, Australia 17-19 June 2024

Volume 1 of 2

ISBN: 979-8-3313-1611-2

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2024) by Australasian Institute of Mining & Metallurgy (AusIMM) All rights reserved.

Printed by Curran Associates, Inc. (2025)

For permission requests, please contact Australasian Institute of Mining &Metallurgy (AusIMM) at the address below.

Australasian Institute of Mining & Metallurgy (AusIMM) P.O. Box 660 Carlton South Victoria 3053 Australia

Phone: 61 3 9658 6100 Fax: 61 3 9662 3662

publications@ausimm.com.au

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: 845-758-0400 Fax: 845-758-2633

Email: curran@proceedings.com Web: www.proceedings.com

CONTENTS

Volume 1

History of MOLTEN	
The MOLTEN Conference series and research trends in slags, fluxes and salts 1980–2023 P Hayes and D Fadhlurrahman	3
Experimental measurements of – Physico-chemical properties (viscosity, surface tension, conductivity)	
Electrical conductivity measurement of CaO-Al ₂ O ₃ -CaF ₂ slags by van der Pauw-Ohta Method <i>K Aya, T Sumita, N Saito and K Nakashima</i>	17
Methodology development of electrical conductivity measurements for non-ferrous slags P-J Boeykens, R Starykh, M Shevchenko, L Scheunis, A Van den Bulck, E Jak, I Bellemans and K Verbeken	27
Calcium based ternary nitrate salts for concentrating solar power applications P Gandhre, V Shrotri and L Muhmood	39
Analysis of the melting behaviour of CaF ₂ -free welding fluxes using hot thermocouple technique S L A Gowravaram and S Basu	57
Assessment of phase evolution in CaO–MgO–Al ₂ O ₃ –SiO ₂ system with varied Al ₂ O ₃ /SiO ₂ ratio using <i>in situ</i> high-temperature Raman spectroscopy and X-ray scattering <i>F Gyakwaa, S Wang, H Singh, G King, Q Shu, W Cao, M Huttula and T Fabritius</i>	73
Effects of FeO/SiO ₂ ratio and optical basicity on viscosity and melt structure of FeO–SiO ₂ –Al ₂ O ₃ –CaO–MgO–Cr ₂ O ₃ melts J Isaksson, A Andersson, A Lennartsson, F Gyakwaa, Q Shu and C Samuelsson	81
Viscosity measurement of FeO-SiO ₂ based slags under controlled oxygen partial pressures H-R Lee, H Shin, S-C Shim and Y Kang	91
Study on change in mould slag characteristics during casting Ti containing steel grades <i>P P Sahoo, M Ranjan, P Palai and C R Borra</i>	101
Ionic structure analysis of relaxed surface of molten oxide slags for surface tension modelling M Suzuki	107
In situ analysis of steelmaking slags and mold fluxes at elevated temperatures using a remote fibre-optic Raman probe H Tekle, B Zhang, T Sander, J D Smith, R E Gerald II, J Huang and R J O'Malley	117

133

Viscosity of foaming fluid measured by falling-ball method

S Ueda, T Iwama, Y Mita and R Inoue

Monitoring Sb in lead refining using advanced techniques in Industry 4.0 A Van den Bulck, T De Staercke, S Zummar and T Van Rompaey	141
Effect of solid particle size on the viscosity of a secondary copper smelting slag O Vergote, I Bellemans, K Verbeken and A Van den Bulck	149
Relationship between thermal conductivity and structure of alkaline earth (Ca, Mg) aluminoborosilicate melts S Yamada, H Aoki, A Nakayama and K Morita	159
Quantitative studies on the microstructures of ternary CaO-Al ₂ O ₃ -SiO ₂ glasses, melts and correlation with their high-temperature viscosities J You, X Tang, F Zhang, A Canizarès, C Bessada, L Lu, K Tang, Q Zhang and S Wan	165
Viscosity evaluation of hot metal containing vanadium and titanium via a novel measurement technology and the thermodynamic analysis method W Yu, J Wen, Z Jiang, P Hou, M Hu and C Bai	181
Viscosity of CaO-aluminosilicate slags Z Zhang and R G Reddy	189
Experimental measurements of – Reaction/Process kinetics	
Effect of carbon on the sintering kinetics of a single hematite pellet R A Anand, N N Viswanathan and M M Pande	201
Synthesis of actinide chlorides for molten salt preparation P Chevreux, S Serp and M Duchateau	211
Dissolution of quartz in Mn-slags during production of SiMn alloy S Jayakumari, V Canaguier and E Ringdalen	219
Carburisation and melting of hot compacted iron in a coke bed J Park, M Kim, I-K Suh, E Kim and J Lee	231
Theoretical and experimental approaches to determine the mass transfer coefficient in the steel/slag/refractory system M Schickbichler, E Karimi-Sibaki, A Kharicha and S K Michelic	239
Sulfur loss from the slag during desulfurisation of liquid steel A Sharma, M Jain, S Kumar, S Karosiya, M M Pande, N N Viswanathan and D Kumar	251
Deoxidation of Ti-Ni alloy by the calcium and CaF ₂ -MgCl ₂ flux Y Su, K S Park, J K Kim and J H Park	261
Comparative dissolution behaviours of recycled cement paste and lime in EAF slag under static conditions M Yang, Z Yan and Z Li	267
Experimental measurements of – Thermodynamic properties, multi-phase equilibria, minor element distributions	
Experimental study and thermodynamic modelling of phase equilibria in the FeO-FeO _{1.5} -SbO _{1.5} -SiO ₂ system in equilibrium with metal H Abdeyazdan, M Shevchenko, J Grogan, D Graf and E Jak	279

Overview of the experimental phase equilibria studies of the Ni-Sn-S, Cu-Sb-S, Cu-Sn-S, Fe-Sb-As and Fe-Sn-As systems M Akhtar, M Shevchenko and E Jak	287
Distribution behaviour of B and P in Si-slag system at 1500°C K Avarmaa, A Putera, J Chen, G Brooks and M A Rhamdhani	301
Phase diagram study and thermodynamic modelling of the CaO-TiO ₂ -CaF ₂ system J Bang and I-H Jung	313
Chemical- and micro-analytical techniques for molten slags, mattes, speisses and alloys J Chen, P Hayes and E Jak	321
Coupled phase diagram experiments and thermodynamic modelling of the CaO-SiO ₂ -Ga ₂ O ₃ system for Ga recycling W O Choe and I H Jung	335
Increasing the deportment of titanium species to, and the stability field of pseudobrookite phase for valourisation of titaniferous slags X C Goso, J Petersen and J Nell	343
Effect of MgO concentration on phase evolution during steelmaking slag cooling process W F Gu, J Diao, H Qin, H F Yu, Y Sasaki and S Ueda	353
Studying the smelting behaviour of bauxite residue pellets reduced by hydrogen using high temperature thermal analysis *D Hariswijaya and J Safarian*	361
The effect of iron oxide on sulfide capacities of CaO-based molten slags M Hasegawa and K Saito	375
Effect of alumina on microstructures of iron ore sinters from the perspective of the phase equilibria of the CaO-SiO ₂ -Fe ₂ O ₃ -Al ₂ O ₃ system M Hayashi, A Takahashi, Y Uchisawa, T Watanabe and M Susa	389
The possibility of using an autogenous Hydrogen-DRI slag as a raw material for vanadium extraction J Huss, A Vickerfält and N Kojola	401
Solubility of nitrogen and inclusion characteristics in high aluminium steels M Ishfaq and M M Pande	413
Carbon distribution behaviour between molten iron and CaO-Al ₂ O ₃ -FeO-SiO ₂ -MgO slag at 1873 K Y J Jun, G H Park and J H Park	423
Thermodynamic behaviour of TiO ₂ in CaO-Al ₂ O ₃ -MgO-TiO ₂ slag at high temperatures D Y Jung, Y J Jun, M J Lee, S J Park, S C Kang, Y-B Kang and J H Park	427
Equilibrium distribution of Pb between copper metal and slags T Kan and C Chen	433
Distribution of Pb, Zn, Fe, As, Sn, Sb, Bi and Ni between oxide liquid and metal in the 'CuO _{0.5} '-CaO-AlO _{1.5} system in equilibrium with Cu metal at 1400°C <i>G Khartcyzov, M Shevchenko and E Jak</i>	447
In situ observation of phase transition of silico-ferrite of calcium and aluminium	459

Phase equilibrium study in the sodium metasilicate primary phase field of PbO-Na ₂ O-SiO ₂ system between 800 and 1000°C X Ling, E Moosavi-Khoonsari and M Barati	471
Fusion of molten phase R&D into the metallurgical industry to drive circularity S Nikolic, A Burrows, S L Nicol, O J Mendoza and B J Hogg	477
Phase equilibria of Al_2TiO_5 – Ti_3O_5 pseudobrookite solid solution in the Al_2O_3 – TiO_x system under various oxygen partial pressures Y-J Park, W-Y Kim and Y-B Kang	487
Boron removal through multistage refining treatment using CaO-SiO ₂ -Al ₂ O ₃ slag A D P Putera, K L Avarmaa, H T B M Petrus, G A Brooks and M A Rhamdhani	495
Activities of components in Ca ₂ SiO ₄ -Ca ₃ P ₂ O ₈ solid solution at 1573 K K Saito and M Hasegawa	505
Thermal analysis of molten salts and their mixtures with metals D Sergeev, J Qi, S Gezgin, D Rapp, A Lichtinger, F Beckstein and M Müller	517
Advancement in experimental methodologies to produce phase equilibria and thermodynamic data in multicomponent systems M Shevchenko, D Shishin and E Jak	531
Experimental and thermodynamic study of the phase equilibria in the NiO-CaO-FeO-Fe ₂ O ₃ system in air and in equilibrium with metal (Fe-Ni) alloy <i>S Sineva, M Shevchenko, D Shishin and E Jak</i>	559
Slag chemistry on the Moon S P Singh, G A Brooks, M G Shaw, B Eisenbart, A R Duffy, M A Rhamdhani and A K Shukla	569
Phase relationship of quaternary system FeO-Al ₂ O ₃ -SiO ₂ -'V ₂ O ₃ ' at 1873 K and its impact during melting of H-DRI for possible vanadium extraction A Vickerfält, J Huss and J Martinsson	581
Phase diagram of V ₂ O ₃ -Fe _t O-SiO ₂ -CaO(15 mass%) system at 1623 K B Yan, D Wang, T Deng, B Song and Q Shu	585
Implementation of research outcomes by industry – Application of fundamental research to industrial practice	
Understanding the side-blown furnace slag system at Glencore Nordenham's lead plant – from theory to industrial application A Abadias Llamas, A Kandalam and C Zschiesche	599
Improving industrial copper processing operations through the application of thermodynamic fundamentals and advanced predictive tools G R F Alvear Flores	611
Visualisation of calculated thermodynamic properties by integration of FactSage™ with SEM- EDS element maps *N Barrett, S Mitra, E Copland, D O'Dea and T Honeyands*	625
Transient slag behaviour in the Direct Reduced Iron (DRI) and scrap-based Electric Arc Furnace (EAF) process – case study for high and low-grade DRI input S. Chatteriee, S. K. Panda and M. A. Van Ende	635

Practicalities of the use of fayalite slags for recovery of metals from urban wastes J Chen, S Nicol, B Hogg, E Jak and S Nikolic	647
Research on <i>in situ</i> recovery technology of hot-dip galvanized dross R Chu, X Deng and X Li	651
Direct observation of the fayalite slag formation behaviour from large SiO ₂ grains Y Goto, S Kawanishi, S Natsui, J Takahashi and H Nogami	653
Combining the power of computational thermochemistry with the convenience of Python within the digital platforms of SMS group GmbH S Khadhraoui, M Reuter, A Akouch, C Kirmse, T Yusuf, R Degel, N Borowski and E Hecker	663
Hy³ (Hy-cube) project – Hyundai Steel's carbon neutral strategy H Kim and M J Sun	671
Characterising bubble size distribution and generation position in iron oxide-containing slag smelting reduction K Ohno and T Kon	675
A study of heat and material balances in direct reduction plant with various conditions <i>M J Sun and H Kim</i>	685
Reducing CO ₂ emissions from the ferro-alloy and silicon production M Tangstad and G M Tranell	691
Thermal phosphorus – it's a hot commodity with a hot process E Wingate, Y Liu, R Prasad, R Atmuri and W Liang	705
Mathematical descriptions of – Physico-chemical property models	
Combined molecular dynamics – experimental investigation of oxidic slag properties I Bellemans, A Maslov, D Seveno and K Verbeken	715
Molecular dynamics simulation of viscosity of selected pure oxide melts A E Moiseev and A Kondratiev	725
Evaluation of thermal conductivities of molten SiO ₂ -Al ₂ O ₃ -CaO slags K Tang, M Zhu, J You, X Ma and G Tranell	735
On the development of a viscosity model for molten multicomponent slag systems with several glass-forming, amphoteric and modifier oxides G M Zhomin, A S Arkhipin and A Kondratiev	743
Determining the properties of CaO-Al ₂ O ₃ -SiO ₂ slags from molecular dynamics simulation <i>M Zhu and J Safarian</i>	759
Mathematical descriptions of – Process simulations	
Process modelling and high-throughput thermochemical calculations using ChemApp for Python	771
Ö K Büvükuslu. F Tang. M Baben and S Petersen	

a remedy of wear in a basic oxygen steelmaking furnace using CFD modelling R Chowdhury, S Mitra, G Evans, T Honeyands, B J Monaghan and D Scimone	781
Modelling of gas-slag flow behaviour in the ironmaking blast furnace – a review X F Dong, B J Monaghan and P Zulli	795
Molten slag flow in an ironmaking blast furnace – a mesoscopic level investigation X F Dong, A Jayasekara, D Sert, R Ferreira, P Gardin, S J Chew, D Pinson, B J Monaghan and P Zulli	807
A phenomena-based model to investigate the possibility of scrap melting in an Open Slag Bath Furnace (OSBF) for green ironmaking A Emami, S van der Sluijs, M van Ende and Y Tang	821
Modelling of liquid/liquid interface movement during spindle rotation of refractory – slag corrosion test H Lee, B Choi and Y Chung	831
CFD modelling of slag fuming, with focus on freeze-lining formation C M G Rodrigues, M Wu, M Chintinne, A Ishmurzin, G Hackl, N Voller, A Ludwig and A Kharicha	839
Integrated process modelling for the Kalgoorlie Nickel Smelter G Sartor, A Rich, D Grimsey, M White and R Forzatti	847
Pyrometallurgical process simulations using CALPHAD thermodynamic databases M-A Van Ende, N Kumar and I-H Jung	857
Development of a nitrogen prediction model for 320 tonne converter C M Yoon, C-H Eom, Y D Jeon and K S Kim	871
Efficient material descriptions for modelling high-temperature processes J H Zietsman	877
Volume 2	
Mathematical descriptions of – Thermodynamic databases and models	
Thermodynamic modelling of species distribution in AlCl₃:BMIC salts M K Nahian and R G Reddy	895
Continuous method of thermodynamic optimisation using first-derivative matrices for large multicomponent systems E Nekhoroshev, D Shishin, M Shevchenko and E Jak	901
Thermodynamic modelling of the Fe-Al-Ti-O system and evolution of Al-Ti complex inclusions during Ti-added ultra-low carbon steel production Y-J Park and Y-B Kang	915
Sulfur distribution ratio in iron and steelmaking slags R G Reddy and A Yahya	923

Challenges and limitations in development of large thermodynamic databases for multiple molten phases using the Modified Quasichemical Formalism D Shishin, M Shevchenko, E Nekhoroshev and E Jak	931
Prognostic models for electroslag remelting process and slag engineering G Stovpchenko, L Medovar, L Lisova, D Stepanenko and D Togobitskaya	949
Research on – Industrial slag/flux/molten salt design and optimisation	
Recent advances in understanding phosphorus in oxygen steelmaking G Brooks	965
Reoxidation of Al-killed ultra-low C steel by Fe _t O in CaO-Al ₂ O ₃ -MgO _{sat.} -Fe _t O slag representing RH slag by experiment and kinetic modelling Y-M Cho, W-Y Cha and Y-B Kang	971
Effect of liquefaction controlling components in carbon-free mould powder for the continuous casting of ultra-low carbon steels *N Gruber*	979
Fluxing options and slag operating window for Metso's DRI smelting furnace J Hamuyuni, K Vallo, T Haimi, F Tesfaye, J Pihlasalo and M Lindgren	997
Mixed alkali effect on structure of Al ₂ O ₃ -based slags S H Hyun and J W Cho	1007
Effect of solid-solved FeO and MnO on hydration of free MgO in steelmaking slag R Inoue, N Kado, T Iwama and S Ueda	1013
University research on molten slags, matte, speiss and metal systems for high temperature processing – challenges, opportunities and solutions E Jak, M Shevchenko, D Shishin, E Nekhoroshev, J Chen and P Hayes	1029
Genetic design of personalised slag for manufacturing die steel via electroslag remelting method and an industrial application case Z H Jiang, Y M Li, J L Tian and J W Dong	1061
Flux smelting behaviour of pre-reduced Mn ore by hydrogen at elevated temperatures P Kumar and J Safarian	1077
Machine learning for predicting chemical system behaviour of CaO-MgO-SiO ₂ -Al ₂ O ₃ steelmaking slags case study **B Laidens, W Bielefeldt and D Souza**	1087
Perspectives of chemical metallurgy fundamentals in slag innovation S Lee and I Sohn	1109
Effect of slag composition on titanium distribution ratio between ferrosilicon melt and CaO-SiO ₂ -Al ₂ O ₃ slag at 1773 K M J Lee and J H Park	1117
Using novel methods to characterise slag films for continuously casting challenging and innovative steel grades Z Li, T Zhang, S Qin, X Yang, Z Yan, P Wilson and M A Williams	1123

The recovery of pig iron from the Zimbabwean limonite-coal composite pellet S Maritsa, S M Masuka and E K Chiwandika	1135
Effect of SiO ₂ on the structure and crystallisation of CaF ₂ -CaO-Al ₂ O ₃ slag used in electroslag remelting P M Midhun and S Basu	1149
P M Midnun and S Basu	
A machine learning model to predict non-metallic inclusion dissolution in the metallurgical slag	1169
W Mu, C Shen, C Xuan, D Kumar, Q Wang and J H Park	
Effect of C/A ratio on the crystallisation behaviour and structure of calcium-aluminate based alternative mold fluxes for casting medium and high Mn/Al steels A Nigam, K Biswas and R Sarkar	1177
Improving cobalt extraction through oxidative blowing of copper-nickel matte R A Pakhomov, P V Malakhov, L V Krupnov and I M Dymov	1187
Comparative study of oxide dissolution modelling in secondary steelmaking slags N Preisser and S K Michelic	1195
Impurity capacities of non-ferrous slags R G Reddy	1205
Flow investigation of multiphase manganese slags V Rimal and M Tangstad	1217
Improvement of the copper flash smelting furnace (FSF) and the slag cleaning furnace (SCF) process by advice-based control of silica and coke addition A Schmidt, S Winkler, E Klaffenbach, A Müller, V Montenegro and A Specht	1231
Characterisation and assessment of B ₂ O ₃ added LF slag S Soumya Varanasi, K Sripushpa, M Bhaskara Venkata Rao, S Mahboob Basha and A Kamaraj	1235
Slag-steel reactions in the refining of advanced high-strength steel P Su, P C Pistorius and B A Webler	1249
Crystallisation control of CaO-SiO ₂ -Al ₂ O ₃ -MgO system inclusion Y Wang, S Sukenaga, W Z Mu, H Zhang, H W Ni and H Shibata	1259
Effect of Al ₂ O ₃ /SiO ₂ ratio on structure and properties of mould flux for high-Al steel continuous casting	1267
Q Wang, J Zhang, O Ostrovski, C Zhang and D Cai	
Pushing the boundaries of slag operability – processing of high-MgO nickel concentrates with the Ausmelt TSL process	1281
J Wood, J Coveney, S Creedy, D Grimsey and A Rich	
A fundamental investigation on welding flux tunability geared towards high heat input submerged arc welding for shipbuilding applications H Yuan, H Tian, Y Zhang, Z Wang and C Wang	1297
Electrodeposition and electrochemical behaviour of molybdenum ions in ZnCl ₂ -NaCl-KCl molten salt H Zhang, S Li, Z Lv and J Song	1305

Development of solid waste-based flux and its application in out-of-furnace of low-silicon hot metal Z Zhao and Y Zhang	dephosphorisation 1315
Analysis on composition and physical-chemical property change of PbO-be Pb smelting J X Zhao, Y R Cui, G Cao, G H Wang, B Li, M M Ren, Z M Wang and H	-
Slag volume effects on direct-reduced iron (DRI)-based electric furnace ste Q Zhuo, P C Pistorius and M N Al-Harbi	
Research on – New energy and metal production tech	nnologies
An attempt towards ferrochromium production using molten oxide electroly. <i>J Biswas, L Klemettinen, D Sukhomlinov, W Malan and D Lindberg</i>	sis 1349
Ferroalloy extraction from a Zimbabwean chrome ore using a closed DC fu S Dandi, M J Masamvu, S M Masuka, S B Chinosengwa and E K Chiwa	
Production of molybdenum disilicide using a silicon-containing molten bath dipping method J Gamutan, H Fukaya and T Miki	via the hot 1375
Reduction and melting behaviours of carbon – iron oxide composite using i free carbon obtained by vapour deposition R Higashi, D Maruoka, Y Iwami and T Murakami	iron carbides and 1387
Electrolytic reduction of metal sulfides/oxides in molten salts for sustainable X Hu, L Sundqvist Ökvist and J Björkvall	e metal production 1395
Aluminothermic production of silicon using different raw materials K Jakovljevic, N Simkhada, M Zhu, M Wallin and G Tranell	1401
Manufacturing of FeSiB high-temperature phase change material by silicotl J Jiao, M Wallin, W Polkowski and M Tangstad	hermic reduction 1413
Physical properties optimisation of the Zimbabwean limonite ore-carbon co a sustainable feed for pig iron production S M Masuka, D Simbi, S Maritsa and E K Chiwandika	emposite pellets as 1423
State-of-the-art of electroslag refining and challenges in the control of ingot L Medovar, G Stovpchenko and G Jianjun	t cleanness 1429
Hydrogen plasma in extractive metallurgy application B Satritama, D Fellicia, M I Pownceby, S Palanisamy, A Ang, G A Brook M A Rhamdhani	1445 ks and
Challenges facing non-ferrous metal production P Taskinen and D Lindberg	1455
The extraction of white phosphorus in molten salt	1465

Research on – Recycling and environment sustainability

The effect of FeO/SiO ₂ ratio on the feasibility of utilising iron silicate slags as supplementary cementitious materials A Andersson, J Isaksson, L Brander, A Lennartsson, Å Roos and F Engström	1471
Pyrometallurgical treatment of nickel smelting slag with biochar D Attah-Kyei, D Sukhomlinov, M Tiljander, L Klemettinen, P Taskinen, A Jokilaakso and D Lindberg	1481
An investigative study on the interfacial behaviour of waste graphite resource with liquid iron S Biswal, S Udayakumar, F Pahlevani, N Sarmadi and V Sahajwalla	1495
Distribution of impurity elements in oxygen-enriched top-blowing nickel smelting with Fe extraction-oriented slag adjustment G Cao, J Zhao, J Wang, S Yue, B Li, J Zheng, Y Cui and H Zong	1501
Lessons learned from attempts at minimising CO ₂ emissions in process metallurgy – pyrolysed secondary raw materials, bio-coke, and hydrogen as alternative reducing agents <i>F Diaz, M Sommerfeld, G Hovestadt, D Latacz and B Friedrich</i>	1519
A short review – hydrogen reduction of copper-containing resources D M Fellicia, M I Pownceby, S Palanisamy, R Z Mukhlis and M A Rhamdhani	1533
Smelting of different hydrogen-reduced bauxite residue-calcite pellets for iron and alumina recovery M K Kar and J Safarian	1543
Effect of mill-scale and calcined dolomite on high Al ₂ O ₃ sinter and its reduction behaviour S J Kim, L Tomas da Rocha, S W Kim and S Jung	1553
Slag-metal interfacial reactions in pyrometallurgical processing of industrial wastes for recovery of valuable metals H J Kim, R R Kim, H S Park and J H Park	1565
Towards integration of pyro- and hydrometallurgical unit operations for efficient recovery of battery metals from waste lithium-ion batteries L. Klemettinen, J. Biswas, A. Klemettinen, J. Zhang, H. O'Brien, J. Partinen and A. Jokilaakso	1571
Physicochemical properties of steelmaking slags for the mitigation of CO ₂ emissions in steel sector M J Lee, J H Heo and J H Park	1585
Understanding zinc-containing species in basic oxygen steelmaking dust R J Longbottom, D J Pinson, S J Chew and B J Monaghan	1591
Effect of oxygen on the interfacial phenomena and metal recovery rate in recycling process J Park, Y-B Kang and J H Park	1603
Measuring circular economy through life cycle assessment – challenges and recommendations based on a study on recycling of Al dross, bottom ash and shavings E Pastor-Vallés, A Vallejo-Olivares, G Tranell and J B Pettersen	1609
A thermodynamic and sustainability assessment of PCB recycling through the secondary Cu smelting process P Tikare, M Mohanasundaram, R Kumar and A Kamaraj	1621

Melting behaviour investigation of municipal solid waste incineration fly ash samples from different incineration technologies for metal recovery – an integrated experimental and thermodynamic modelling approach E Soylu and G Tranell	1631
Conversion of hard-to-use wastes to new raw materials for low-energy glass/mineral-wool manufacturing Z Yan, T Htet, S Zhang and Z Li	1643
Research on – Refractory-melt interactions	
Radical involved reaction and weak magnetic effect between alumina refractory and high alumina slags A Huang, S H Li and H Z Gu	1655
On the stability of CaS in liquid steel containing alumina or spinel inclusions S Kumar, N N Viswanathan and D Kumar	1665
Corrosion behaviour of ferrite and aluminate refractories in cryolite-aluminium melts R Z Mukhlis and M A Rhamdhani	1675
The interaction between slag and MgO refractory at conditions relevant to nickel laterite ore smelting Y H Putra, Z Zulhan, A D Pradana, D R Pradana and T Hidayat	1693
TTT dua, 2 Zuman, A D Fladana, D N Fladana and T Moayat	

Author Index