Supersonics

Papers Presented at the AIAA SciTech Forum and Exposition 2025

Orlando, Florida, USA 6-10 January 2025

ISBN: 979-8-3313-1814-7

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

The contents of this work are copyrighted and additional reproduction in whole or in part are expressly prohibited without the prior written permission of the Publisher or copyright holder. The resale of the entire proceeding as received from CURRAN is permitted.

For reprint permission, please contact AIAA's Business Manager, Technical Papers. Contact by phone at 703-264-7500; fax at 703-264-7551 or by mail at 34922 Uwptkug'Xcmg{'Ftkxg."Uwkg'422, Reston, VA 20191, USA.

TABLE OF CONTENTS

NASA'S QUESST MISSION SPECIAL SESSION
Supersonic Flight Testing to Assess Ground Recording Systems for NASA's Low Boom Flight Demonstrator
LANDING/TAKEOFF (LTO) NOISE PREDICTION SPECIAL SESSION
Takeoff and Landing Analysis of Two Northrop Grumman Supersonic Conceptual Vehicle Designs
System Noise Assessment and Prediction Methodology Uncertainty Analysis for JAXA's Supersonic Conceptual Aircraft With Variable Noise Reduction System
Considerations Toward Uncertainty Quantification of Single Event Noise Predictions for Novel SST Concept Aircraft
Results of the NASA Prediction Uncertainty Reduction Tech Challenge
Acoustic Simulations of Two-Stage Fans Behind a Supersonic Inlet
Reduction of Aircraft Noise Uncertainty for a Notional Supersonic Business Jet
SUPERSONIC AERODYNAMICS I
Supersonic Configurations at Low Speeds (SCALOS): Wind Tunnel Tests at the University of Washington - an Overview and Some Key Insights
Performance Evaluation of a Graph Neural Network-Augmented Multi-Fidelity Workflow for Predicting Aerodynamic Coefficients on Delta Wings at Low Speed
Supersonic Configurations at Low Speeds (SCALOS) Lateral-Directional Aerodynamics: Configuration Variations and Control Surface Effects
Supersonic Configurations at Low Speeds(SCALOS): Correlation of CFD and Wind Tunnel Test Results
Dynamic Stability Characteristics for Commercial Supersonic Configurations at Low-Speed Flight Conditions – Part III

SUPERSONIC AERODYNAMICS II

Author Index

Effect of Angle of Attack on Transverse Jet Interaction Forces on 7-Degree Cones in Mach 3.9 Flow	346
Tate H. Fletcher, Darrell S. Crowe, Mark F. Reeder, Spencer G. Schaiper	
Derivation and Implementation of Relaxable Wake Vortex Filaments in a Supersonic Panel Code <i>Joshua J. Hurwitz, Spencer J. Adams, Jeffrey Taylor, Douglas F. Hunsaker</i>	360
Identifying Flow Interactions in the Vicinity of a Wing-Body Junction at Supersonic Speeds	401
Investigation of Supersonic Cavity Flow With Weapon Racks	416
SUPERSONIC MODELING AND DESIGN I	
Using Global Market Demand Analysis to Guide Conceptual Design of Low-Boom Supersonic Transports	426
Wu Li, Karl Geiselhart, Ryan Palma, Michael Patterson, Samual Dollyhigh, Zhou Wang, Nicolas Hinze, Antonia Trani	
Single- and Two-Stage Fan Designs for a Supersonic Airliner with Focus on Certification Noise Reduction	448
A Methodology for Controlling Sonic Boom Loudness of an N+2 Aircraft Configuration	470
A Numerical Investigation of Outer Mold Line Shape Morphing for Flight Test	483
SUPERSONIC MODELING AND DESIGN II	
A Unified Procedure for Velocity Influence Calculation Within Subsonic/Supersonic Linear Panel Methods	497
Effect of Liner Cooling Flow on Combustor Emissions for Commercial Supersonics Technology Kumud Ajmani, Jeffrey P. Moder	525
The Application of Rapid Aerodynamic Prediction Techniques to Supersonic Aircraft	534
Compressible-Flow Aeroelastic Stability of Cylindrical Ducts	547
Multidisciplinary Analysis of Commercial Supersonic Point-to-Point Travel	558