Medical Imaging 2025

Physics of Medical Imaging

John M. Sabol Ke Li Shiva Abbaszadeh Editors

17–21 February 2025 San Diego, California, United States

Sponsored by SPIE

Cosponsored by United Imaging Healthcare Co., Ltd. (United States)

Published by SPIE

Volume 13405

Part One of Two Parts

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings: Author(s), "Title of Paper," in *Medical Imaging 2025: Physics of Medical Imaging*, edited by John M. Sabol, Ke Li, Shiva Abbaszadeh, Proc. of SPIE 13405, Seven-digit Article CID Number (DD/MM/YYYY); (DOI URL).

ISSN: 1605-7422

ISSN: 2410-9045 (electronic)

ISBN: 9781510685888

ISBN: 9781510685895 (electronic)

Published by

SPIE

P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time) SPIE.org

31 IL.UIG

Copyright © 2025 Society of Photo-Optical Instrumentation Engineers (SPIE).

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of fees. To obtain permission to use and share articles in this volume, visit Copyright Clearance Center at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: A unique citation identifier (CID) number is assigned to each article in the Proceedings of SPIE at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

xv Conference Committee

Part One

NOVEL X-RAY SOURCES AND SYSTEMS 13405 02 Rotating anode x-ray tube technology at the limit [13405-1] Multi-source static CT with adaptive fluence modulation to minimize hallucinations in 13405 03 generative reconstructions [13405-2] Reducing scatter and cone-beam artifacts in DE-CBCT (Best Student Paper Award - Runner 13405 04 Up, All-Conference Best Student Paper Award - Finalist) [13405-3] 13405 05 High-fidelity prefiltration using a double bowtie design for quantitative low-dose pediatric spectral CT imaging [13405-4] 13405 06 Classifying breast cancer and microcalcifications with multi-contrast single-mask phase contrast imaging [13405-5] **CONE BEAM CT** 13405 07 Quantification of metal artifacts in metal artifact avoidance [13405-6] 13405 08 Optimization for spectral modulator in fast-KV-switching dual-energy CBCT imaging [13405-8] Deep learning-based noise reduction for ultra-low-dose dental CBCT images using paired 13405 09 datasets from different domains [13405-9] **DETECTORS** 13405 0A An ultra-high sensitivity sensing collimation imager: design, modelling, and assessment [13405-10] First experimental demonstration of charge-cloud imaging for micrometer-scale resolution 13405 OB with a photon-counting silicon CT detector [13405-11] 13405 OC On the performance of a stacked dual-layer flat-panel detector [13405-12]

13405 0D	A-Se thin film detector on ITkpix CMOS readout: time-over-threshold tuning and pixel performance analysis [13405-13]
13405 OE	Optimizing parylene and photoconductor thickness in indirect conversion amorphous selenium detectors $[13405\text{-}14]$
13405 OF	Experimental investigation of direct-indirect flat-panel imager using tellurium doped amorphous selenium $[13405\text{-}15]$
	PHOTON COUNTING DETECTOR CT
13405 OG	Implicitly defined PCCT material decomposition estimator and learned physics-informed neural proxy [13405-16]
13405 OH	Log conversion with fewer counts for photon counting CT: decreasing both bias and variance simultaneously [13405-17]
13405 01	Design of a "3.5th generation" photon counting detector CT architecture for higher spatial resolution and decreased ring artifact [13405-18]
13405 OJ	Deep bowtie and patient scatter correction applied to clinical photon-counting CT [13405-19]
13405 OK	Increasing spatial resolution in photon counting CT by exploiting the non-linear partial volume effect [13405-20]
13405 OL	Task-specific deep learning-based denoising for UHR cardiac PCD-CT adaptive to imaging conditions and patient characteristics: impact on image quality and clinical diagnosis and quantitative assessment [13405-21]
	BREAST IMAGING
13405 OM	Towards quantitative spectral mammography using triple-energy K-edge imaging and a two-pass reconstruction approach [13405-22]
13405 ON	A single convolutional neural network for simultaneous estimation of breast thickness map and scatter maps in dual-energy digital breast tomosynthesis using a dual-layer detector [13405-23]
13405 00	Methodology to simulate temporal changes in breast tumors and parenchyma using Perlin noise $[13405\text{-}24]$
13405 OP	Modular breast and tumor perfusion phantoms for validation of 4D dynamic contrastenhanced dedicated breast CT $[13405\text{-}25]$

	PHYSICS/IMAGE-GUIDED PROCEDURES: JOINT SESSION WITH CONFERENCES 13405 AND 13408
13405 0Q	Learning-based dual-domain rigid motion estimation in interventional C-arm cone-beam CT [13405-26]
13405 OR	In silico study of quantitative digital subtraction angiography (qDSA) blood velocity measurements versus catheter geometry [13405-27]
13405 OS	Can we assess brain perfusion even when DSA images are contaminated by motion artifacts? [13405-28]
	IMAGE RECONSTRUCTION WITH DIFFUSION MODELS
13405 OU	Patlak reconstruction from dynamic PET based on diffusion models: evaluations using total-body dynamic datasets [13405-30]
13405 OV	Joint reconstruction and scatter estimation in cone-beam CT using diffusion posterior sampling [13405-31]
13405 OW	Generative super-resolution PET imaging with Fourier diffusion models [13405-32]
13405 OX	3D diffusion posterior sampling for CT reconstruction [13405-33]
	ANGIOGRAPHY AND RADIOGRAPHY
13405 OZ	Impact of spectral separation on robustness to scatter errors in quantitative dual-energy radiography [13405-35]
13405 10	Synthetic mask energy subtraction angiography: phantom study [13405-36]
13405 11	Deep learning fluoroscopy denoising: a beam quality insensitive approach [13405-37]
13405 12	Microparticle x-ray targets [13405-38]
	VIRTUAL CLINICAL TRIALS
13405 14	ISIT-GEN: an in silico imaging trial to assess the inter-scanner generalizability of CTLESS for myocardial perfusion SPECT on defect-detection task (Best Student Paper Award, All-Conference Best Student Paper Award - Finalist) [13405-41]
13405 15	A representation-based method for continuous CT image reconstruction [13405-43]

13405 16	The role of harmonization: a systematic analysis of various task-based scenarios [13405-104]
13405 17	Deep virtual CT workflow for evaluating AI in low-dose CT lung cancer screening: a 2D demonstration [13405-40]
	CT IMAGE QUALITY
13405 18	In vivo evaluation of non-invasive temperature monitoring with spectral CT thermometry [13405-44]
13405 19	The impact of noise texture on a deep learning denoising model for high-resolution cardiac EID-CT [13405-45]
13405 1A	A perfusion phantom for dynamic micro-CT imaging [13405-46]
13405 1B	Patient-specific channelized hotelling observer to estimate lesion detectability in CT [13405-47]
13405 1C	Motion compensation in cardiac CT for the entire heart using a residual U-Net [13405-48]
13405 1D	Contrast-guided virtual monoenergetic image synthesis via adversarial learning for coronary CT angiography using photon counting detector CT [13405-49]
	PHASE CONTRAST AND DARK FIELD IMAGING
13405 1E	Quantitative characterization of speckle-based x-ray imaging setup for sub-resolution microstructure analysis using standardized samples [13405-50]
13405 1G	Analytic and accurate reconstruction method for x-ray dark-field computed tomography [13405-52]
13405 1H	Single-shot dark-field and phase contrast micro-CT with single-mask phase contrast imaging [13405-53]
	DEEP LEARNING APPLIED TO IMAGING PHYSICS
13405 11	Joint estimation of anatomy and implants in x-ray CT using a mixed prior model [13405-54]
13405 1J	Deep-learning micro-CT perfusion quantification [13405-55]
13405 1K	Improving low-contrast liver metastasis detectability in deep-learning CT denoising using adaptive local fusion driven by total uncertainty and predictive mean [13405-56]
13405 1L	

POSTER SESSION: CBCT

	POSIER SESSION. CBCI
13405 10	Deep learning reconstruction of triple-source CT data with sparse view and truncation [13405-60]
13405 1P	Unified scatter estimation in x-ray spectral cone-beam CT using linear Boltzmann transport equation with labels on energy groups [13405-61]
13405 1Q	Cephalometric radiograph generation from 3D dental CBCT images with automatic positioning [13405-62]
13405 1R	Improving soft tissue contrast using a multisource CBCT for potential application in adaptive radiation therapy [13405-63]
13405 1S	Multi-scale information guided dual-domain fusion network for metal artifact reduction in dental CBCT [13405-64]
	POSTER SESSION: IMAGE-GUIDED INTERVENTION AND RADIOTHERAPY
13405 1T	Respiratory volume prediction for pediatric TIS patients with MAGEC rod treatment from pre-operative dynamic MRI and chest radiographs [13405-65]
13405 1U	Investigation of the effect of training set parameters on deep neural network prediction accuracy of fluoroscopic procedure-room scatter dose distributions [13405-66]
13405 1V	Experimental evaluation of metal artifact avoidance and reduction for anterior cervical discectomy and fusion surgery [13405-67]
13405 1W	The role of SiPM-based PET for accurate volume delineation [13405-68]
13405 1X	Direct head orientation parameter estimation for IPEN [13405-69]
13405 1Y	Swine liver segmentation for FEM-based image fusion in CBCT guided histotripsy [13405-70]
13405 1Z	CycleGAN with multi-scale block and attention gate for synthesizing CT image in adaptive radiotherapy [13405-71]
	POSTER SESSION: IMAGE RECONSTRUCTION
13405 20	Projection-embedded Schrödinger bridge for CT sparse view reconstruction [13405-72]
13405 21	Second-generation AI iterative reconstruction for abdominopelvic CT imaging of colorectal cancer: a comprehensive evaluation [13405-75]
13405 22	A deep-learning reconstruction framework for low-dose, dynamic x-ray CT [13405-76]

13405 23	Reconstructing multiple basis images directly from dual-energy CT data using the basis-region model and volume conservation constraint [13405-77]
13405 24	Accurate image reconstruction from truncated offset CT data using TVL1 algorithm [13405-78]
13405 25	Optimizing hyperparameters in regularized tomographic reconstruction via pixel-wise adaptive fine-tuning [13405-79]
13405 26	Regularizing neural fields for 3D computed tomographic imaging from sparse projections $[13405\text{-}80]$
13405 28	Black-box optimization of CT acquisition and reconstruction parameters: a reinforcement learning approach $[13405\text{-}82]$
13405 29	Optimization-based image reconstruction for limited-angle dual-energy cone-beam CT [13405-83]
13405 2B	Wavelet-based iterative network for dual-domain sparse-view CT reconstruction using MR priors $[13405\text{-}85]$

Part Two

POSTER SESSION: ARTIFICIAL INTELLIGENCE

13405 2C	Optimization of the U-Net++ model for cerebral artery segmentation based on deep learning in computed tomographic angiography images [13405-86]
13405 2D	Multiple organ segmentation for CT scout images [13405-87]
13405 2E	Fully automated AI-based dual-energy subtraction system for chest radiography [13405-88]
13405 2F	Dose-aware adaptive denoising network for low-dose CT [13405-89]
13405 2G	Quality enhancement of radiographic x-ray images by interpretable mapping [13405-90]
13405 2H	Self-supervised metal artifacts reduction with a continuous constraint along the z-axis [13405-91]
13405 21	Early step skipping score-based generative model for low-dose CT denoising [13405-92]
13405 2J	Simulating scanner- and algorithm-specific 3D CT noise texture using physics-informed 2D and 2.5D generative neural network models [13405-93]
13405 2K	Synthesis of realistic medical images with pathologies using diffusion models with application to lung CT and mammography [13405-94]

13405 2L	Compressibility analysis for the differentiable shift-variant filtered backprojection model [13405-95]
13405 2M	PET image denoising based on diffusion models and sequential Monte Carlo posterior sampling [13405-96]
13405 2N	Noise aware system generative model (NASGM) of PET: a deep learning-based model for PET image simulation with quantitative assessment [13405-97]
13405 2P	PET image reconstruction with diffusion priors and half-quadratic splitting [13405-99]
13405 2Q	CT synthesis from MRI using 3D swin UNETR and distillation for upper abdominal radiotherapy treatment planning [13405-100]
13405 2R	Validation and implementation of a deep learning-based automated approach for myocardial segmentation in clinical CT perfusion measurement [13405-101]
13405 2T	Feature extraction effect in multi-agent reinforcement learning-based denoising model for digital tomosynthesis [13405-103]
	POSTER SESSION: VIRTUAL CLINICAL TRIAL AND PHANTOMS
13405 2U	Development of a virtual photon-counting micro-CT imaging platform for preclinical cancer studies [13405-105]
13405 2U 13405 2V	
	cancer studies [13405-105] A Monte Carlo model of coronary artery plaque growth for use in computational phantoms
13405 2V	cancer studies [13405-105] A Monte Carlo model of coronary artery plaque growth for use in computational phantoms [13405-106]
13405 2V 13405 2X	cancer studies [13405-105] A Monte Carlo model of coronary artery plaque growth for use in computational phantoms [13405-106] An integrated PET-CT simulation pipeline for biomedical imaging research [13405-108]
13405 2V 13405 2X 13405 2Y	cancer studies [13405-105] A Monte Carlo model of coronary artery plaque growth for use in computational phantoms [13405-106] An integrated PET-CT simulation pipeline for biomedical imaging research [13405-108] 3D CTGAN: generating 3D heterogeneous tissue textures for virtual phantoms [13405-109] Development of breast suppression technique for dynamic chest radiography using a
13405 2V 13405 2X 13405 2Y 13405 2Z	cancer studies [13405-105] A Monte Carlo model of coronary artery plaque growth for use in computational phantoms [13405-106] An integrated PET-CT simulation pipeline for biomedical imaging research [13405-108] 3D CTGAN: generating 3D heterogeneous tissue textures for virtual phantoms [13405-109] Development of breast suppression technique for dynamic chest radiography using a mixed dataset of virtual and real patients [13405-110] Characterizing 3D-printed deformable CT phantoms for respiratory motion applications
	13405 2N 13405 2P 13405 2Q 13405 2R

POSTER SESSION: DETECTORS

13405 34	Evaluating the impact of detector internal noise on antiscatter grid performance in x-ray imaging: a Monte Carlo simulation study [13405-115]
13405 35	Efficient GPU-accelerated Monte Carlo simulation for x-ray diffraction imaging with spectroscopic detector modeling [13405-116]
13405 36	Modelling the impact of including the charge carrier creation and transport in photon counting detectors on the radiographic image formation [13405-117]
13405 37	The potential of scintillator-based photon counting detectors: evaluation using Monte Carlo simulations [13405-118]
13405 38	Performance evaluation of small pixel-sized Gd_2O_2S and CsI CMOS x-ray detectors [13405-119]
	POSTER SESSION: NOVEL IMAGING METHODS
13405 39	Grating-based dark-field computed tomography: an ex-vivo porcine lung study [13405-120]
13405 3F	A dataset of x-ray diffraction patterns of common amorphous materials [13405-126]
13405 3G	Head-to-head comparison of analog-filament vs a digital-CNT x-ray sources: a paradigm shift in radiology $[13405\text{-}127]$
13405 31	Optimizing transmit field inhomogeneity of parallel RF transmit design in 7T MRI using deep learning [13405-129]
	POSTER SESSION: PHOTON COUNTING DETECTOR CT
13405 3J	Pixel-to-pixel variation correction using cylindrical phantoms in photon-counting CT: total count results [13405-130]
13405 3K	Feasibility of photon-counting micro-CT for intraoperative specimen imaging: a simulation study [13405-131]
13405 3L	Scatter levels in triple-energy photon-counting x-ray imaging [13405-133]
13405 3M	Comparative evaluation of noise texture and images of a synthetic lung nodule using energy-integrating and photon-counting CT [13405-134]
13405 3N	Lung nodule volumetry accuracy and precision on energy-integrating and CdZnTe photon-counting CT technologies [13405-135]

13405 30	Deep learning-based iodine map prediction with photon-counting CT images [13405-136]
13405 3P	Balance between the number of projections and exposure time in photon counting CT with a data-driven approach [13405-137]
13405 3Q	Optimizing photon-counting CT protocol for enhanced pancreatic cancer imaging: a phantom study comparing kV settings and imaging modes [13405-138]
13405 3R	Influence of anti-scatter grid on the SNR of photon-counting and energy-integrating detectors: a simulation study [13405-139]
13405 3S	The utility of photon-counting CT localizer radiograph in bone densitometry [13405-140]
13405 3T	Advancing image domain performance evaluation in photon-counting computed tomography: a physics-guided deep learning approach [13405-141]
13405 3V	A Monte Carlo-based assessment of a SPECT/CT system with a single photon counting detector: a feasibility study [13405-143]
13405 3W	Multi-material decomposition using photon-counting CT: iodine and residual error measurements [13405-144]
13405 3X	Joint contrast-enhanced and non-contrast CT segmentation by means of PCCT data: improved AI tuning illustrated for kidney segmentation [13405-145]
13405 3Y	Assessment of spatial resolution variability in clinical photon-counting detector CT [13405-146]
13405 3Z	Influence of small pixel size on noise power spectrum and low-contrast detectability in clinical photon-counting CT [13405-147]
13405 40	Evaluation of spectral performance in photon-counting CT for breast cancer imaging: a feasibility phantom study [13405-148]
13405 41	One-step material decomposition for photon-counting CT using implicit neural representation and physics-guided model [13405-149]
13405 42	Line profile edge-width half maximum analysis of mixed coronary plaque phantom by photon counting CT: impact of calcium and iodine on detection of low attenuation plaque with ground truth reference $[13405\text{-}150]$
	POSTER SESSION: BREAST IMAGING
13405 43	Monte Carlo simulation of photon-counting breast CT system: from implementation to image quality evaluation [13405-152]
13405 44	Two-stage convolutional neural network for breast CT reconstruction [13405-153]

13405 45	Pipeline to generate synthesized mammographic images: reliability of a new framework fo data augmentation-based ray-tracing method, Monte Carlo simulation, and deep learning scatter estimation [13405-154]
13405 46	Characterization of breast samples via basis function methods using differential linear x-ray scattering coefficients [13405-155]
13405 47	Evaluation of deep learning-based scatter correction in x-ray breast imaging: across image domains and downsampling ratios [13405-156]
13405 48	Objectivity of a quality assurance phantom for mammography and tomosynthesis [13405-157]
	POSTER SESSION: CT IMAGE QUALITY
13405 49	Deep scatter estimation for static CT using multiple projections [13405-158]
13405 4A	Investigating the effects of non-uniqueness in dual-energy CT for an object containing k-edge contrast agent [13405-159]
13405 4B	Quantitative accuracy of CT protocols for cross-sectional and longitudinal assessment of COPD: a virtual imaging study [13405-160]
13405 4C	Intra- and inter-scanner CT variability and their impact on diagnostic tasks [13405-161]
13405 4D	Impact of beam hardening on CT attenuation values of the lung parenchyma: analysis using computer simulations with voxelized patient models [13405-162]
13405 4E	A diffusion model-based dual domain approach for CT metal artifact reduction [13405-164]
13405 4F	Noise power spectrum analysis in CT for improved patient-specific image optimization: a shift from phantom model to clinical scan [13405-165]
13405 4G	A weighted multi-ray model for penumbra effects induced spectral mixing in x-ray CT [13405-166]
13405 4H	A hybrid spatial resolution CT architecture and its super-resolution reconstruction using diffusion model [13405-167]
13405 41	Enhancing clinical CT image quality assessment: adapting no-reference methods NIQE and BRISQUE [13405-168]
13405 4J	Exploring bias in spectral CT material decomposition: a simulation-based approach [13405-169]
13405 4K	Trainable spatio-temporal bilateral filters: 4D-filtering for 4DCT denoising [13405-170]

13405 4L	Image quality assessment of computed tomography images using uncertainty estimation [13405-171]
13405 4M	Variability in patient CT radiation dose and image quality: the impact of positioning and body habitus via a virtual imaging trial study [13405-172]
13405 4N	Feasibility of scatter correction in triple-source CT with 1D anti-scatter grid and beam blockers [13405-173]
13405 40	Characterization of x-ray tomography based on a novel continuous projection functor [13405-174]
13405 4P	Robust calibration of a dynamic model for a high-resolution microCT scanner [13405-175]
	DIGITAL POSTER SESSION
13405 4Q	LM-SPD-Net: list-mode TOF-PET image reconstruction using stochastic primal-dual network [13405-73]
13405 4R	A CT metal artifact reduction method driven by implicit neural representation and dual-domain regularization [13405-163]