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Abstract. A novel approach to improve injury risk assessment of behind-helmet blunt trauma (BHBT) events using 
machine learning is presented. Four rigid impactor profiles were fired at the ballistic load sensing headform (BLSH) 
using an air cannon to represent BHBT loading conditions. 14 key features were extracted from the seven-load cell 
array time histories recorded by the BLSH. No clear pattern emerged from the key features to easily identify which 
impactor corresponded to which test, therefore, a machine learning approach was used. The support vector machine 
(SVM) multinomial classifier was trained on a total of 48 shots, including combinations of four impactor face 
profiles, two test velocities, and three repeats at each of the two impact locations were provided as training/validation 
data. Cross-feature scaling was performed to prevent over- or under-fitting to specific features. The SVM accuracy 
was evaluated using stratified 12-fold cross-validation (leave-one-out cross-validation), where the model was found 
to have approximately 94% accuracy. Ballistic testing was then performed on infantry helmets mounted on the BLSH 
using 9mm FMJ and 64-grain FSP projectiles. The same 14 key features used to train the SVM on air cannon data 
were extracted from each ballistic event and fed into the model which predicted the equivalent impact profile. 
Equivalent testing was repeated on a clay-filled ballistic helmet to ascertain the actual deformation profile using the 
witness material which could then be compared against the profile predicted by the classifier. Finally, the predicted 
profiles and measured peak forces of the helmet testing were combined with the Allanson-Bailey BHBT injury risk 
curves to ascertain the probability of an AIS2+ injury for each event. 
 
 
1. BACKGROUND  
 
Combat helmets provide many protective benefits to the head including, in part, attenuation of blunt 
force impacts, resistance to penetration from ballistic projectiles and mitigation of behind-helmet blunt 
trauma (BHBT) from defeated projectile strikes. If not managed adequately, injuries to the head can 
occur and will vary with the helmet design, threat severity and human tolerance.  

BHBT involves the transmission of forces from a defeated projectile strike resulting in local shell 
deformations and attenuation of the projectile’s energy. The stiffness and strength of the shell, the amount 
of standoff from the head, and the use of impact liners can greatly affect the loads and resulting injury 
outcomes. For example, in the study of ballistic plate and ballistic helmet impacts, it was found that 
increasing the helmet stand-off or inserting an impact liner reduced intra-cranial pressures and skull 
fracture severity significantly during ballistic shell deformation [1], [2]. Additionally, helmets that 
exhibited larger shell deformations had greater contact areas with increased intra-cranial pressures and 
skull fracture severity. Skull fracture tolerance also varied with skull fracture mode (simple, comminuted) 
and severity (depressed, displaced) with dependence on load magnitude, distribution, rate, and the energy 
deposited into the anatomical structure. Observations of the injury mechanisms associated with some 
BHBT events have been documented in previous biomechanical studies: 

1. Damage to the scalp with circular lacerations at the impact site (Bass, Boggess, Bush, & al., 
2003), [1].  

2. Cranial fractures with linear fractures radiating from and around the point of impact with the 
most severe cases resulting in comminuted fractures [4], (Bass, Boggess, Bush, & al., 2003), 
[1],. [2], [5].  

3. Dural contusions from the dura separating from the bone at the impact site (Bass, Boggess, 
Bush, & al., 2003). 

 
The risk of skull fracture under BHBT conditions has been linked to peak force metrics with the 

findings often limited to broad generalizations due to differences in test setups, test specimen variation, 
threat characteristics, data analysis metrics and test methods. Recent research by Allanson-Bailey [6] 
suggested that the risk of skull fracture is not only dependent on the peak transmitted force but also on 
the force distribution. As a result, characterizing the dynamic force and distribution may increase the 
specificity of the fracture risk assessments thereby improving the understanding of helmet design on 
protection including, for example, shell stiffness, helmet-head stand-off, local deformation shape, and 
impact liner interactions. For a comprehensive evaluation of the dynamic forces from shell deformation, 
combat helmets must be evaluated as a complete system in situ and must include the ballistic shell, impact 
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liner, and retention/sizing system, as applicable. To this end, instrumented headforms have been 
proposed to measure peak dynamic force but have limited ability to measure spatial force distribution 
[7], (Trexler, et al., 2018), [9], (Voo, Improved Repeatability and Reproducibility of the Ballistic Load 
Sensing Headform, 2016), [11], [12]. Alternatively, the Ballistic Load Sensing Headform (BLSH) [13]
was assessed to be biofidelic under BHBT conditions (based on impacts to the temporoparietal location 
with a 38 mm diameter, 103-gram rigid impactor at 20 m/s and 35 m/s with comparison to force-
deformation and force-time histories of PMHS corridors) [14] and has seven load sensors covered with 
compliant skin pad at specific cranial regions to measure peak dynamic force transmission and 
distribution, Figure 57. While the BLSH has been shown to be repeatable and applicable for limited 
BHBT conditions [13], [15], it is not known whether the spatial resolution of the BLSH sensing area is 
sufficient to properly characterize load distribution and skull fracture risks across a wide range of behind 
helmet loading conditions as proposed by Allanson-Bailey.

Figure 57: The Ballistic Load Sensing Headform for measuring BHBT.

The objective of the present work was to investigate whether the forces measured by the BLSH 
could be used to estimate the deformation profile of a helmet and, hence, skull fracture risk under the 
varying loading conditions defined by Allanson-Bailey. This was accomplished by comparing the 
measured force distribution to that obtained with direct impact to the BLSH with known projectile shapes 
and masses representing simulated behind-shell characteristics.

2. METHODOLOGY

The present study proposes a method for relating the BHBT force profile (i.e., time-histories) measured 
using the BLSH to skull fracture risk. Published rigid impactor test data from Allanson-Bailey, include 
injury risk as a function of strike velocity for several impactor geometries representing typical shapes, 
and hence, load distribution for BHBT conditions. Therefore, a link relating BHBT test data to the various 
rigid impactor test conditions is required for a comprehensive injury risk assessment. The approach 
described herein first requires the generation of a large set of air-cannon (rigid impactor) data at different 
velocities and impact positions for several impactor shapes, sizes, and masses. The data is recorded using 
the seven-load cell array of the BLSH to generate force-time histories for the impact event across the 
sensing area. Next, a machine learning classifier is trained and evaluated to predict the impactor type 
(i.e., class) based on key features extracted from the force-time histories. Subsequently, ballistics tests 
are performed on helmets to quantify the BHBT force-time histories using the BLSH. Finally, data from 
BLSH testing is inputted into the model to classify the deformation profile as being closest to one of the 
impactor shapes, which is then related to injury risk curves published by Allanson-Bailey.

Rigid Impactor Testing 

For the current study, four impactor shapes (Table 23) used by Allanson-Bailey in the BSM test series 
were selected for direct impact on the left side load cell array of the BLSH headform. The four impactors 
selected for testing are. The shape of the impactors used by Allanson-Bailey were partly based on that 
used by Raymond [14] with additional impactors of varying face curvatures and loading area, all limited 
to 38 mm diameter for comparison to cadaveric data of Raymond. The progression of shell shape and 
size as it deforms and contacts the skull was thought to be well represented by the selected impactors. 

Table 23 Characteristics of four projectiles selected for direct BLSH impacts.

Projectile Flat 38 mm Flat 20 mm Curved 19 mm Curved 50 mm
Mass (g) 103.2 104.0 105.4 103.1
Diameter (mm) 38 20 38 38

Load Cell Array with 
Compliant Skin Pad (not 

shown)

Rigid 
Headform

Compliant 
Neck
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Length (mm) 74 74 74 74 
Surface Radius (mm) ∞ ∞ 19 50 
Projectile 

    
 
The projectiles were launched at the BLSH using an air cannon allowing for a free flight of the 

projectile before impact with venting of the muzzle backpressure. Testing was conducted at 15 m/s and 
25 m/s (or approximately 1.56-2.60 N∙s), corresponding to similar peak force values to those expected 
in the ballistic testing. The shots were centred on the load cell array (hex pad #1) or offset midway 
between the centre and upper load cells (hex pad #1 and #7) as shown in Figure 58. Each hex pad has an 
approximate nominal surface area of 440 mm2 (420 mm2 projected). The BLSH’s load cell array was 
positioned 20 cm from the air cannon muzzle and aligned normally to the impactor trajectory. 
 

 
Figure 58. Targeted impact positions relative to the BLSH load cell array.  

 
The load cell data was collected at 100 kHz using the BLSH’s software with 10 kHz anti-aliasing 

analog hardware filters. Each channel was then digitally filtered using a phaseless Butterworth 4-pole 
low-pass filter with a corner frequency of 4,500 Hz, as per the BLSH’s data collection protocol. The 
velocity of the projectile was measured at the exit of the barrel using a dual-beam IR light gate sampling 
at 80 MHz and triggering off the leading edge of the projectile. The BLSH skin pad covering the load 
cell array was inspected after every impact and was replaced when damage was observed.  
 
BHBT testing  
 
The air cannon tests on the BLSH aimed to develop an analysis methodology to predict the geometry of 
a striking impactor. The methodology could then be applied to non-perforating ballistic impacts on 
combat helmets to predict the resulting shell backface deformation profile. To gain insight into the shell 
deformations for the current study, ballistic tests were performed on the aramid combat helmets with a 
9 mm 124-grain FMJ at 300 m/s (1.86 N∙s) and 64-grain FSP projectiles at 400 m/s (1.66 N∙s). Testing 
was conducted using the full shell/liner system on the BLSH to capture the loading profiles. Then, 
ballistic impacts to the shell with the liner removed were conducted to determine the backface 
deformation profile generated by the two projectiles. The 9 mm FMJ was selected to generate a flat or 
low curvature profile, and the 64 gr FSP was chosen to generate higher curvature profiles. To qualify the 
deformation profile, rigidly supported helmet shells were packed with clay (Roma Plastilina No. 1) 
behind the impact site, as seen in Figure 59, and were shot by the two threats. The resulting clay 
indentation provides a permanent record of the shell’s maximum deformation and was then carefully 
removed from the helmet shell and cut along the mid-sagittal plane through the indentation to quantify 
the shape.  
 

 
Figure 59. Helmet shell filled with clay witness material for qualification of BHBT.  

 
Machine learning model  
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The problem of identifying the impactor shape based on a series of response variables is fundamentally 
a multinominal classification problem. For this application, Support Vector Machines (SVM) were 
selected due to the absence of a priori statistical information, the number of input parameters relative to 
the total number of points, the ability to manage multi-class supervised learning where all points have 
the same parameters (no missing data), and accessibility of open-source implementations. The SVM 
method is a supervised learning method, meaning, the correct classification must be included in the 
dataset for training and validation. The four classes included in the analysis were described in Table 23.  
 
2.1.1 Feature Selection 
 
For every test, full force-time histories were generated for the seven load cells in the array. The full data 
curves were not used to avoid overfitting given the limited data available. Instead, key features of each 
trace were extracted from the raw data for use in the SVM model. The following parameters, shown 
graphically and explained in Figure 60, were extracted from each event. The impact position was 
excluded because the classifier must distinguish the impactor profile independent of targeting accuracy 
and symmetries, and the velocity was excluded to not limit the model when the BHBT deformation 
velocity is unknown.  

 

 

Peak force: Maximum sum of seven load cells. 
LC Forces: Force of each load cells at time of peak force. 
Loading start: First time exceeding 10 N total force. 
Total loading time: From loading start to peak force 
%Loading time: from X% peak force (rising) to peak 
 force (at 10%, 25%, and 50%), 
%Unloading time: from peak force (falling) to X% peak
 force (at 10%, 25%, and 50%), 
Average slope: from impact start (10 N) to peak force, 
Loading impulse: area under total load curve from 
 loading start to peak force. 
Average loading impulse: area under average slope 

Figure 60. Features used in SVM training model. 
 
2.1.1 Feature Scaling 
 
Data for SVMs must be scaled to produce unbiased results. Typically, the scaling transforms each feature 
to have a minimum value of 0 and a maximum of 1. This is performed within each training group for 
cross-validation to prevent accidental information transfer (contamination) between groups. In most 
applications, parameters are independent of one another (i.e., the scaling is parameter specific). The 
BLSH features extracted from the time histories are not all independent. For example, a large impactor 
may increase the load on periphery load cells compared to a narrower impactor that only strikes a small 
area. This information may be lost if the parameters are scaled independently. Therefore, a scaling 
method which conserves the relative contribution of similar features was favoured in this application. 
This required scaling the parameters of a specific test using features extracted from the same test. A total 
of 14 parameters, shown in Table 24 were fed into the model. 
 

Table 24 Scaling factors applied to features extracted from BLSH data. 

Extracted Parameter Scaled by Min Scaled Max Scaled 
LC Forces (7) Peak force 0.00 0.80 

%Loading/unloading time (6) Total loading time 0.17 1.92 
Loading impulse (1) Average loading impulse 0.68 1.29 

 
2.1.2 Training Method 
 
The Scikit-learn: Machine Learning in Python (version 1.2.1) was used to implement the SVM model 
and verification [16]. The “nu-SVC (classification)” formulation used in this analysis is an extension of 
SVMs that allows for multi-class problems [17]. The radial basis function kernel was used with nu set to 
0.5. All other model parameters were set to the default values. Data was not augmented; rather, the load 
cell numbering was modified to automatically account for 12 rotational and line symmetry combinations. 
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2.1.3 Evaluation and Validation 
 
In general, supervised learning involves training a model (e.g., SVM) on a portion of the data and 
evaluating the model against the remaining data that was held back from training. The performance of 
the classifier is determined by presenting the response parameters (forces, slopes, impulses, etc.) of the 
test data set, and comparing the actual class (i.e., impactor shape) against the class predicted by the 
model. For purposes of this analysis, the accuracy will be used to assess performance as this metric 
describes the ability of the SVM to predict multiple classes. The accuracy is the ratio of correctly 
identified objects to the total count of objects. A stratified 12-fold cross-validation was used to assess 
accuracy. This method first divides the data into groups of equal size with the same class distribution. 
Here, the fold count was equivalent to leave-one-out cross-validation for a multiclass problem. Therefore, 
the following process was followed 12 times: 44 of the 48 shots were used to train an SVM classifier, 
then four shots (one of each class) were used to test the model. The expected performance of the 
generalized model constructed using all 48 shots is the average accuracy of the individual models.  
 
2.1.4 Application 
 
The SVM model described in the previous section is a trained machine-learning classifier. The model 
can be applied to new data to predict the impact class. In the context of the present study, data collected 
in BHBT helmet tests using the BLSH are processed to extract key features and fed into the SVM as 
inputs. The model then predicts the impactor profile based on the training data. The peak force and 
impactor shape can then be related to injury risk using data published by Allanson-Bailey. 
 
 
3. RESULTS AND DISCUSSION 
 
A total of 48 air cannon rigid impactor shots were performed on a bare BLSH headform. Additionally, 
eight ballistic tests were performed on combat helmets: two were used to establish the BHBT profile on 
witness clay, and the remaining six used the BLSH to record the impact force-time histories. The shots 
were split evenly between the 64-grain FSP and the 9 mm FMJ projectiles. The SVM classifier was 
trained on the air cannon data and used to predict the BHBT impact profiles to correlate each event with 
injury risk. 
 
Rigid impactor testing 
 
For every air cannon test, time series data was generated for each of the seven load cells (e.g. Figure 60), 
additionally, representative force distribution maps were plotted to confirm targeting accuracy 
(Figure 61). The 20 mm flat projectile exhibited poor accuracy and the variability in targeting was 
assumed to be caused by the projectile pitching or yawing (weight distribution and aerodynamic effects) 
upon exit of the air cannon which then led to the centre of pressure, as measured by the BLSH, not being 
aligned with the targeted impact location. Targeting the other three projectiles, including the 38 mm flat 
projectile, was accurate and repeatable. The average peak total force and strike velocities for each of the 
test configurations are provided in Error! Reference source not found..  
 

 
Figure 61. Representative force loading on the BLSH during air cannon testing using the 38 mm flat 

impactor for a centred impact (left) and an offset impact (right).  
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(a) (b) 

  
(c) (d) 

Figure 62. Representative force loading on the BLSH during air cannon testing at 15 m/s.  
 
BHBT testing 
 
The indentation in the clay backing from the 9 mm 124 gr FMJ and the 64-grain FSP helmeted clay 
impacts are shown in Figure 63 with the corresponding impactor shapes from Table 23 that best matched 
the indentations. Note that the shell deformations extend beyond the boundary of the projectile’s body.  
 

 
Figure 63. Clay indentations obtained from ballistic helmet strikes compared to rigid impactors used in 

the BLSH tests. 
 

The curved 50 mm radius of the rigid impactor faces best matched the clay indentation from the 
backface deformation of the helmet shell for the 9 mm 124 gr FMJ bullet strike, whereas the curved 19 
mm radius impactor best matched the indentation from the 64 gr FSP impact. Again, it is noted that the 
shell deformations extend beyond the outer body of the impactor. 
 
Machine learning model 
 
Before training the SVM model, a preliminary analysis of the BLSH data included a comparison of 
specific impact parameters for the different impactors. There were promising trends toward identifying 
the impactor shape based on the BLSH’s load cell measurements, however, as there was no single 
parameter that could decisively identify the impactor shape, more sophisticated methods were required. 
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3.1.1 Evaluation and Validation

The procedure described from the implementation of SVM through testing and performance was applied 
to the BLSH test data to develop a method of identifying the impactor type based on the resultant BLSH 
force-time histories. Of the 48 shots studied using the SVM model with 12-fold cross-validation, the 
accuracy was 93.75% with two shots misidentified, Table 25. Therefore, given a set of experimental 
parameters, the SVM would be able to classify the closest equivalent impactor type during BHBT helmet 
testing with a high level of accuracy. A one-nearest-neighbour (1-NN) classifier was also trained as a 
baseline to establish predictive power using a trivial classification method. The 1-NN model, which is 
often included in published studies as a basis for comparison, had an accuracy of 85.42%. The SVM 
significantly outperformed the reference classifier with 3/48 misclassified events (compared to 7/48 for 
the 1-NN model). The high accuracy suggests that ML models can classify impactor shapes by detecting 
patterns that are not obvious to humans. Further research into alternate ML models is warranted. All 
testing was performed on the left side of the BLSH. Due to differences in skin pad and hex pad curvatures
between the front, rear, and side impact sites, it is not known if the SVM model would be able to 
distinguish rigid impactor geometries at sites other than the one tested without additional training data.

Table 25. Binary classification confusion matrix.

Impactor 
Classification

Model Prediction
Flat 38 mm Flat 20 mm Curved 50 mm Curved 19 mm

Flat 38 mm 11 - 1 -
Flat 20 mm - 10 - 2

Curved 50 mm - - 12 -
Curved 19 mm - - - 12

3.1.2 Application

The SVM classification model described in Section 6 above and trained using air cannon testing was 
applied to the BLSH data from the ballistic non-perforating behind helmet deformation impacts. The 
helmets with full suspension and retention system used for testing were fitted to the BLSH in the as-worn 
position by a soldier to achieve typical shell offsets. The BLSH load cell data was processed similarly to 
the BLSH air cannon test data and included the extraction of the 14 input parameters for the SVM. The
SVM model classified the new BHBT data (three 9 mm FMJ and three 64-grain FSP) as belonging to 
the “Flat 38 mm” class. The injury risks are plotted in Figure 64 on Allanson-Bailey’s injury risk curves 
for fracture, overlaid on the class predicted by the model. 

Figure 64. Clay indentations obtained from ballistic helmet strikes compared to impactors used in the 
BLSH tests.

Here, the boundary conditions between the BLSH/BHT tests and the clay-filled shell tests are 
inherently different (i.e., presence of liner/retention system and offset, rigidity of BLSH vs clay). It is 
therefore difficult to directly compare the BHBT profiles predicted by the SVM to the witness testing. 
Importantly, the projectiles and velocities selected for the analysis were demonstrated to produce 
different BHBT deformation profiles on the clay witness material. 
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The clay testing showed that BHBT profiles are different for the two projectiles, but they do not 
necessarily correspond to what they would be for the BLSH. It would be very useful to develop a method 
of measuring the actual BHBT impact profile with boundary conditions that match the BLSH to validate 
the SVM model. Alternate methods such as DIC on the inside surface of a helmet shell would likely 
provide similar deformation profiles as the clay witness due to similar boundary conditions. The dynamic 
helmet shell deformation is constrained by the contents (i.e., BLSH headform or operator skull). The 
SVM suggested that both projectiles produce loading most similar to the Flat 38 mm rigid impactor. This 
suggests one of the following scenarios:  

1. Interactions between the helmet shell and BLSH headform produce similar BHBT profiles for 
the different projectiles as the maximum deformation is constrained. 
2. The presence of a helmet liner/retention system with offset for BLSH testing produce a more 
distributed load than the clay-filled helmet tests with no liner or offset, thereby biasing the 
deformation profile. Similarly, the liner and comfort pads present during the BLSH tests may in 
fact be generating a wider backface profile. 
3. The air-cannon data was not representative of the ballistic test conditions. The SVM should 
have produced different estimates of the impact profile for the two cases but did not because the 
closest case to both was not particularly representative.  
 
Each of these potential explanations is potentially insightful and could further the understanding of 

BHBT. First, if the interactions between the helmet system and the headform, which is significantly less 
compliant, are critical to the proper assessment of BHBT, then an operator’s skull also likely provides 
significantly more resistance than a clay witness. Second, if the presence of shell offset and helmet liner, 
which are designed to distribute load and provide additional protection, significantly changes the 
backface deformation profile, the approaches that aim to quantify the deformation of the inner shell 
surface (i.e., DIC) may have limited applicability to in-theatre events. Third, the fundamental underlying 
assumption relied upon in this analysis is that the air cannon impacts are representative of the helmet 
BHBT response during ballistic impacts. Characteristics of helmet BHBT responses have been published 
[6], (Voo, Improved Repeatability and Reproducibility of the Ballistic Load Sensing Headform, 2016), 
[14], [18] with varying characteristics which are likely due to the unique response of combat helmets to 
the specific threat and shot location, the varying stand-off distances between shell and head, and the 
helmet shell support conditions (e.g., edge clamped, air backed or supported by a liner).  As a result, 
BHBT assessment studies will need to explore the range of responses that can lead to injury. 

The k-fold cross-validation of the air-cannon model indicates that it is a strong model with high 
predictability for data similar to training data. SVM classifiers are known to be extremely sensitive to 
outliers (i.e., test data that is fundamentally different from training data) and unable to extrapolate beyond 
the training dataset as optimal hyperplanes may have high curvature outside the training bounds. 
Therefore, a fundamental question in the present study is whether the air-cannon training data conditions 
(constant cross-sectional loading) is representative of ballistic BHBT loading (decelerating end 
ballistics). The BHBT tests tend to have a much faster loading and a wider peak but similar maximum 
load. If further testing is performed using the same approach described herein, it would be beneficial to 
vary the rigid impactor masses and velocities to more closely match the peaks, slopes, and impulses seen 
in BLSH/BHBT testing. In theory, if the rigid impactors are designed to match the BHBT deformation 
and the mass is selected to represent the effective mass of the helmet shell and projectile, and the 
velocities are selected to represent the shell deformation speed, it may be possible to accurately represent 
ballistic events using air-cannon testing. The differences in loading curves, combined with the poor 
ability of SVM to extrapolate to new data not contained within the training data are critical limitations 
of this approach. By extension, if the air cannon data test conditions, based on elements of the Allanson-
Bailey injury risk curves, are not representative of BHBT loading conditions, perhaps their relevance to 
BHBT injury severity ought to be questioned.  
 
 
4. CONCLUSION AND RECOMMENDATIONS 
 
Behind helmet blunt trauma is a potential threat when a helmet is struck by non-perforating ballistic 
projectiles where the resulting local shell deformation can impart significant loading to the head causing 
skull fracture. According to research conducted by Allanson-Bailey, in addition to the load magnitudes, 
the risk of skull fracture may also be dependent on the shape of the shell’s backface deformation. The 
Ballistic Load Sensing Headform (BLSH) was used in a series of air cannon and ballistic tests to assess 
the headform loads and to estimate the profile of the shell’s deformation based on characteristics of the 
headform load measurements. The direct load measurements with the BLSH’s seven load cell array did 
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not have sufficient spatial resolution to distinguish the load profile of the impacting surface. That said, 
the characteristics of the resulting force-time data traces showed trends that may offer insight into the 
impacting surface’s profile. A method was developed to combine multiple characteristics of the BLSH’s 
response curves using a Support Vector Machine (SVM) to classify the response for different impactor 
shapes that were shot directly at the headform. The SVM was shown to be 94% effective at distinguishing 
between four different impactor shapes used by Allanson-Bailey. 

In this study, significant assumptions regarding the applicability of air cannon testing to ballistic 
events were required. This may have resulted in BHBT events effectively being outliers that are not 
representative of the physical processes at play. Using a different ML approach that is more robust with 
respect to outlier sensitivity could help but the training data must still be representative of the test data. 
In theory, it may be possible to select a rigid impactor profile that is representative of the geometries seen 
in BHBT testing, tuning their mass to match the effective mass of the helmet shell and bullet, and 
matching inner shell deformation velocities. If these conditions are met, the applicability of air cannon 
testing to simulate ballistic BHBT events on the BLSH could be greatly improved. As helmet shell 
performance, stand-off and backings as well as threats change over time, the characteristics of BHBT 
simulating impactors may need to be revisited to better reflect current helmet technologies. 

Additional limitations are noted with respect to the work of Allanson-Bailey with the use of a 
Bovine Scapula Model (BSM) as an analogue for fractures to the cranium [6]. While similarities were 
demonstrated with Raymond [14] when using a multi-parameter logistical regression model, limiting 
factors remain and are noted to include the scapula surface curvature, skin and bone thicknesses, effective 
mass, and mode of fracture with respect to the population being studied. Further limitations include the 
shape, projected area, mass, rigidity, and speed of the impactors used to represent the true dynamic shell 
deformations and interactions with the cranium for a range of helmet constructions. However, it should 
be recognized that while rigid impactors provide a first approximation of behind shell interactions, they 
are a valuable addition to help identify the contributing factors to injury by controlling the impact 
conditions compared to full helmet system tests with inherent greater variability. Ideally, rigid impactor 
conditions should span the range of expected responses of the helmet system in-situ for relevant 
estimation of the injury risk, as with the SVM classification approach being presented. 

The discrepancy between the deformation profile seen in the clay witness testing and those 
predicted by the SVM may be a systemic artefact inherent to the comparison of different processes. The 
presence of the liner system that distributes force and interactions between the shell and a non-compliant 
headform may result in a different BHBT profile than when a shell is filled with clay. The objective of 
this study was to develop a method of predicting the impactor shape on the BLSH. This was achieved 
for air cannon testing, but it would be useful to have a method of validating the BHBT deformation 
profile on the BLSH to fully validate the approach.  

An alternate development pipeline approach could be proposed, where BHBT tests are performed 
on clay or using DIC to quantify the deformation profiles. The machine learning model would then be 
trained and validated on ballistic tests thereby resolving any concerns regarding the applicability of air-
cannon data to BHBT events. This method would be significantly more resource-intensive – from the 
cost of each helmet used in testing to build a dataset sufficiently large for machine learning to be used, 
to the time taken by technicians after every test to repair and recondition deformed clay. This approach 
would require a researcher to classify the deformation profile in clay or using DIC for each impact into 
one of a set of impact profile definitions. The tests would then be repeated on the BLSH to determine the 
load profiles for each test. Finally, every new BHBT test condition would be performed on the BLSH to 
assess the force distribution from the load cells, expected deformation profile from the ML classifier, and 
the injury risk from the combined peak force and deformation profile class using the Allanson-Bailey 
curves. It is fair to question the relevance of the Allanson-Bailey injury risk curves for BHBT testing due 
to differences in boundary and impact conditions, and test medium, however, until a more suitable dataset 
becomes available to the research community, this is arguably the most pertinent reference. 

The approach described herein attempts to link BHBT data collected on the BLSH to published 
injury risk curves using a machine learning classifier based on rigid impactor tests performed using an 
air-cannon. Each step of the process required assuming the validity of certain aspects (air cannon testing 
to represent ballistic BHBT events, applicability of Allanson-Bailey injury risk curves to BHBT events, 
etc.) Addressing limitations identified in this study could improve the presented methodology and ability 
to link BHBT tests performed on the BLSH to injury risk using machine learning.  
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