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Abstract. Limit velocities are the impact velocities at which a penetrator has a certain probability of perforating a 
given target. These limit velocities are often used as performance metrics to evaluate the effectiveness of targets 
(e.g., personal armour) at stopping a given penetrator. Limit velocities typically need to be determined 
experimentally, especially for new designs or concepts for which there is little or no pre-existing data. When 
evaluating protection against small arms, these limit velocity tests often employ an adaptive binary data gathering 
algorithm. One issue encountered when modelling binary data (perforation/no-perforation in this case) is that one 
needs a relatively large sample size to develop a model with reasonable confidence bounds (precision) due to the 
information-sparse nature of binary data. In recent years, the ability to capture the residual velocity of these 
penetrators after impacting the target has become more prevalent through the use of high-speed cameras or other 
modern instrumentation. The new methodology outlined by the authors in this paper demonstrates that the 
inclusion of this additional continuous data significantly improves both precision and efficiency with regard to the 
modelling of limit velocities. This paper will discuss the development of the equation for residual velocities that 
was sufficiently generic to apply to a wide range of penetrators and targets, while also remaining amenable to a 
tractable and computationally efficient statistical analysis. The authors go on to demonstrate the improvement to 
efficiency and precision using various Monte Carlo and re-sampling comparisons to traditional binary testing and 
modelling methods. 
 
 
1. BACKGROUND 
 
Ballistic penetration testing is an integral part of research and development, as well as demonstration 
testing, for various military commodities including personnel protection, ammunition, safety equipment, 
and weaponry. The binary nature of perforation testing can pose some problems with regard to the 
inherent inefficiency and variation of the data. There are also risks when trying to find the area of overlap 
from perforation to no-perforation (Zone of Mixed Results [ZMR]): if this region is missed in the test 
data, modelling the data has traditionally not been feasible. In most scenarios where continuous responses 
can be measured (e.g., velocity), useful estimates of relevant parameters including mean and standard 
deviation can be derived from relatively small sample sizes. With binary data, proportions are the relevant 
parameters, and more samples are generally required to estimate a proportion with similar precision. 
When trying to model a continuous response, like velocity as a function of another factor (i.e., propellant 
charge), interpolative Least Squares Regression models can be easily generated with a small sampling 
of points along the predictor input space. For binary data, more samples are required to produce a 
similarly precise model, with Binary Logistic Regression with a Logit link function being the preferred 
modelling method [1]. 

Adaptive test algorithms (e.g., Langlie [2], 3-Phase Optimal Design [3POD] [3]) have helped to 
improve efficiency with respect to lowering sample sizes, but sample size demands still surpass that of 
continuous responses. In cases where no residual continuous response exists, 3POD has been shown to 
be the preferred binary data collection method [4] and has seen increased use in United States Department 
of Defense applications since its development. However, when relevant continuous response metrics can 
be measured concurrently with a binary result, the authors posit that improvements in efficiency and 
precision can be obtained compared to Binary Logistic Regression and 3POD using the modelling 
technique described in this paper, and a new testing algorithm currently in development by the authors. 

 
 

2. METHODOLOGY 
 
2.1 Derivation of Residual Velocity as a Function of Striking Velocity 
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The derivation begins by assuming that, for given target and penetrator materials and geometry, the 
resistive pressure (P) acting on the penetrator depends on the penetrator’s instantaneous velocity inside 
the target (v), a strength parameter (S, units of force per area), and a characteristic velocity (vc). Using 
standard non-dimensionalisation techniques, one can write that

, (1)

where g (·) is some non-negative, dimensionless function. Since P is a force per unit area, one can 
substitute Equation 1 into Newton’s Second Law to obtain

, (2)

where m is the mass of the penetrator, t is time, and A is the effective area of the penetrator. Equation 2 
holds as long as A, S, and m remain constant throughout the impact event. This is not true in general, and 
one expects that the quantity will depend on the initial conditions of the event (i.e., the striking velocity 
(vs)) and how far into the event one is (i.e., t). The authors assume that the velocity of the penetrator is 
strictly decreasing in time so that there is a bijective mapping between t and v. Therefore,6

(3)

for some non-negative function q(·).
Since the authors are interested in the demarcation between perforation and non-perforation events, 

one must be able to model the dynamics near v = 0. The authors assume that g(·) is a smooth function, 
that g(0) = 0 (i.e., no retardation force when v = 0), and that it is strictly increasing (i.e., resistive pressure 
strictly increases with increasing velocity). A permissible candidate function for g (·) is therefore7

. (4)

Substituting Equations 3 and 4 into Equation 2 yields

. (5)

Separating variables, and integrating both sides from the beginning of the impact to when the penetrator 
comes to rest (assuming the target is thick enough) yields

, (6)

where tf  is the total time elapsed. Since the factors in this integrand do not change signs, one can use the 
mean value theorem to obtain

(7)

6 The authors chose to represent , and not , as a function since, for high striking velocities, significant erosion of the penetrator 
may occur such that m may approach 0.
7 One reason for this choice is that g (·) cannot be represented by a power series near v = 0, as discussed later.
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for some non-negative function (·). Note that α must be constrained to less than unity to ensure that the 
penetrator stops in a finite amount of time.8 With this additional constraint on α, take Equation 5, divide 
both sides by v, note that , separate variables, and integrate across the thickness of the target 
that is perforated (T) to obtain

, (8)

where vr is the residual velocity (i.e., exit velocity) of the penetrator.
The authors wished to be able to implement an estimation method to determine the parameters in 

Equation 8 that give the “best fit” to test data. These estimates could then be plugged back into Equation 
8 to approximate limit velocities. Fitting the data is relatively straight forward if the penetrator perforates 
the target, since vs, vr, and T are all known or can be readily measured. Also, knowledge of the 
dependency of q(·) on v is no longer required, as the former can be pulled out of the integral (using the 
mean value theorem) and replaced with a function dependent only on vs.

However, if perforation does not occur, then T will not be known. One must then measure T (which 
may be difficult, especially if the penetrator gets lodged in the target or if the target is littered with debris 
and fractures), and still one is left with determining the dependency of q(·) on v. Alternatively, one can 
throw out any test data where perforation does not occur (which is inefficient).

Therefore, this paper proposes the following method that ensures that all data is used in parameter 
estimation, without requiring the measuring of penetration depths. For non-perforating data, rather than 
setting vr = 0 and measuring T, one leaves T set to the target thickness and extends Equation 8 to allow 
for negative values of vr. The authors now abandon the definition of vr as the physical residual velocity 
and instead think of it as a more abstract measure of the “unconsumed velocity” after penetrating a certain 
thickness of target. This definition still makes physical sense when the penetrator completely perforates 
a target. However, if complete perforation does not occur, and the penetrator only perforated a thickness 
T1, then the amount of unconsumed velocity that is lacking (i.e., −vr) to penetrate a second, adjacent 
target with thickness T2 can be calculated from Equation 8 as9

(9)

Therefore, if the thickness of the target that the penetrator actually perforates (T1) is less than the total 
thickness (T), then one sets T2 = T − T1 and obtains an extension of Equation 8 to negative values of vr, 
given by

(10)

For a fixed T and fixed target/penetrator properties, vr is strictly a function of vs. Additionally, the factors 
of the integrand do not change signs; therefore, one can use the mean value theorem again to obtain

(11)

where qeff(·) is the effective value of across the thickness of the target. The authors assume that qeff(·) 
is an approximately linear function of vs near some striking velocity of interest (vτ), so that

8 Had been expressed as a power series expansion about with , then, near v = 0, would have effectively 
been greater than or equal to unity, implying that the penetrator would not come to rest in a finite amount of time. Since this is 
not physically realistic, the authors did not permit any function for that could be represented by a power series near v = 0.

9 Here the authors have substituted vs in the upper integration limit of Equation 8 with −vr, since this is now the “initial velocity” 
going into the second target. The lower integration limit of Equation 8 is set to zero as one is interested in how much unconsumed 
velocity is required to exactly penetrate the second target (i.e., when is the residual velocity out of the second target exactly zero). 
The authors have also included a minus sign in front of the v inside of q(·) to indicate that this is the extension of q to “negative 
velocities” given the true initial striking velocity of vs. Note that vr < 0 for T2 > 0.

otherwis
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, (12)

where Q is the effective value of across the target thickness at a striking velocity of vτ  and c is some 
constant. Since qeff (vs) is non-negative, one also wants the approximation to be non-negative at all values 
of vs under consideration. The authors assume that Q is not zero, therefore imposing the constraint

. (13)

Substituting Equation 12 into Equation 11 and solving for vr yields

(14)
.

Observe that vc is just a constant with respect to a penetrator-target system and can be absorbed into β; 
therefore, vc is essentially arbitrary. For convenience, then, the authors set vc = vτ, where vτ is now defined 
to be the penetrator striking velocity at which the target is perforated with probability τ (that is, the limit 
velocity associated with probability τ). Additionally, replace the expression , which is non-
negative and does not depend on vs, with the variable u2, so that Equation 14 simplifies to

(15)
.

Note that u has units of velocity.
Lastly, given the intended use-case of modelling vr at a vs near the limit velocity, the authors expect 

that vr will be strictly increasing with respect to vs (i.e., ), which yields the constraint

. (16)

The authors thus arrived at their form for vr as a function of vs, which is given by Equation 15 and 
subject to 0 < α < 1, Equation 13, and Equation 16. Note that caution must be taken if Equation 15 is 
used to model vr’s beyond its intended purpose of finding limit velocities.

2.2 Probability Distribution of the Residual Velocity

The authors now wish to approximate the probability distribution of the residual velocity as a function 
of striking velocity. Upon examination of Equation 15, this paper proposes that the majority of shot-to-
shot variation in residual velocity will result from the variation in u. A physical justification for this is 
that u contains variables related to the angle of attack of the penetrator at impact, the mass erosion of the 
penetrator, and the strength parameter of the penetrator/target interaction (via Q , T, and β), which the 
authors expect to be the more dominant stochastic processes in the impact event when compared to the 
“shape” of the velocity decay curve (defined by α) and the second order interactions with vs (defined by 
c). A heuristic mathematical justification is that, for vs’s near the limit velocity of interest (vτ) and after 
factoring out will be the exponent of a number close to unity, and the term containing c will be 
small compared to unity, so that the variations in either α or c will make small changes to the value of vr. 
Thus, an approximate distribution for the random variable (r.v.) of the residual velocity (Vr) is given by:

(17)
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,

where the capital letters X and U are used to denote r.v. representations of x and u, respectively.
One still needs to determine a probability distribution for U. Recall that U represents a product of 

non-negative r.v.’s; therefore, ln(U) is a sum of r.v.’s. The Lyapunov variant of the Central Limit 
Theorem can be used to show that the sum of independent (but not necessarily identical) r.v.’s 
asymptotically approaches a normal distribution as the number of r.v.’s increases, assuming the higher 
moments of the individual r.v.’s are not “much bigger” than their variance ([5], [6]). Thus, the authors 
assume that ln(U) is approximately normally distributed, or equivalently, that U is approximately log-
normally distributed with parameters μ and σ, which are the mean and standard deviation, respectively, 
of ln(U).

The authors previously defined vτ to be the striking velocity at which the penetrator will perforate 
the target with probability τ. In order for this to hold, one must have that

, (18)

where Equation 17 has been used, and where FU (·) is the cumulative distribution function (CDF) of U. 
Because of the log-normal approximation of U, one then has that

, (19)

where erfc−1 (·) is the inverse of the complementary error function. Therefore, the parameter μ is not free 
but is in fact a function of vτ and σ.

2.3 Maximum Likelihood Estimate of Limit Velocity

The authors chose to use the maximum likelihood estimate (MLE) to determine the “best fit” parameters 
for Equation 17 given test data. The main idea behind the MLE is to create a “likelihood” function (L) 
that is the joint probability density function (PDF) of the m observed values of Vr (denoted vr,1, vr,2, ..., 
vr,m) for a given a set of parameters. This likelihood function is then maximised with respect to the model 
parameters [6]. In other words, these maximising parameters ensure that the modelled probability 
distribution has the highest probability of drawing the observed data. If one assumes that the tests are 
independent, then L is simply the product of the PDFs of Vr for each data point.

In order to construct a likelihood function for the test data, therefore, one must first derive the CDF 
and PDF of Vr. Let FVr be the CDF of Vr. With the help of Equation 17, one obtains, after some 
rearranging:

FVr (vr;vs,vτ,α,c, ) = P (Vr < vr | vs,vτ,α,c, ) = 1 − FU [G(vs,vτ,α,c)M (vr,vs,α)],
(20)

where

and is, in general, the set of parameters that defines the distribution of U; for the authors’ particular 
assumption that U is log-normally distributed, = σ.10 The PDF of Vr is found by taking the derivative 
of FVr (·) with respect to vr:

10 Recall that μ is not a free parameter.
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With Equation 22 derived, one can now construct the likelihood function for the parameters α, c, vτ, and 
.

Here one again runs into an issue with their test data when perforation does not occur. If vr,i > 0, 
then the PDF of Vr for the ith test instance is given by Equation 22. However, if the penetrator does not 
perforate, there is no means on knowing how “negative” vr,i is,11 only that it is non-positive. To address 
this problem, the authors treat the Vr r.v.’s for non-perforating data points as Bernoulli r.v.’s, where vr,i
has a probability pi of being less than or equal to zero. One can calculate pi directly from Equation 20. 
Thus, the likelihood function given test data and 
is:12

. (23)

Thus, the authors seek to find the parameters that maximise L; that is, the MLE parameters.13 The vτ
obtained as part of this maximising set of parameters (denoted ) will therefore be the “best guess” of 
the limit velocity associated with probability τ.

2.4 Construction of Confidence Bounds Around 

To improve the usefulness of the approximation , one needs to construct upper and lower bounds on 
the estimate. Theoretically, the true vτ will reside within this interval with some specified probability 
(often referred to in percentage as the confidence level [CL]).

Due to the complexity of the probability distribution of Vr (nonstandard distribution and, under the 
authors’ assumptions, four unknown parameters: vτ, α, c, and σ) and the sparsity of data (it is not 
uncommon for a penetration test to consist of only 10 - 15 data points), the authors have chosen to use 
parametric bootstrapping to estimate the confidence bounds. The general procedure to find the upper 
confidence bound is as follows (a similar approach can be used to find the lower confidence bound) [6]:

1. Compute the MLE parameters ( ) using the approach discussed in Section 2.3. This set 
of parameters is called the alternative hypothesis (H1).

2. Make a guess for the upper bound of vτ (denoted vτ,u).
3. Compute the MLE for the remaining three parameters assuming vτ,u is true. This set of 

parameters (including vτ,u) is called the null hypothesis (H0).
4. Randomly simulate many repetitions of the penetration test (at the same striking velocities as 

the data) using Equation 17 and the H0 parameters;14 use the results to approximate the distribution of 
some test statistic. The authors propose using the likelihood ratio test statistic (λLR) with vτ = vτ,u as the 
null hypothesis in computing λLR. This is therefore an approximation of the distribution of λLR
assuming H0 is true.

5. Using the simulated distribution, determine the (100 - CLu)th percentile of  λLR (denoted ), 
where CLu is the confidence level of the upper bound.

6. Compute λLR using the H1 and H0 parameters (denote this as ). If , increase the 
guess for vτ,u; otherwise, decrease the guess for vτ,u.

7. Repeat steps 3 - 6 until , to within some tolerance.

3. EXPERIMENTAL TESTING AND NUMERICAL SIMULATIONS

As an initial exploration of the validity of the method proposed in this paper, two pre-existing sets of 
perforation data (with accompanying residual velocity data) were obtained. One data set was of a small 
arms projectile against a “soft” metallic plate, and the second set of data was of the same projectile 
against a “hard” metallic plate. The vs vs. vr data is graphically depicted in Figure 1. These metallic data 

11 Recall the generalised definition of vr.
12 Here, T is the transpose operator, not target thickness.
13 For computational purposes, a common practice is to maximise the log-likelihood function (ln(L)) instead of L. This 
transformation has the benefit of turning multiplications into summations.
14 To be compatible with the test data, simulations of striking velocities that did not perforate during testing should be modelled 
as binary r.v.’s (i.e., perforation/no-perforation), while simulations of striking velocities that did penetrate during testing should 
be modelled as continuous r.v.’s. Also note that for the latter simulations it is possible (and acceptable) to generate negative vr’s.
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sets were investigated first due to their immediate availability; however, the authors plan on performing 
a similar analysis on other target materials, such as personal armour, once funding and testing logistics 
can be arranged.

The first step in the authors’ evaluation was to fit the entire population of the data using the method 
discussed in Section 2.3 for both data sets. Due to the large number of data points, they therefore assumed 
that these fitted parameters were reasonable approximations to the population parameters. Next, using 
the fitted parameters, the authors graphed the Q-Q plots of ln(u) (calculated using Equation 15) against 
a normal distribution, which are shown in Figure 2. The closer the dots lie on a straight line, the more the 
u’s follow a log-normal distribution. Except for a few outliers near the tails, the distribution of the u’s 
appear to closely resembles a log-normal distribution for both data sets.

The second step in the evaluation process was to measure the precision of the proposed residual 
velocity method compared to logistic regression, which is a commonly used method in the estimation of 
limit velocities in the small arms field. For each of the data sets, evenly spaced striking velocities were 
chosen that roughly spanned the data. Penetration “tests” were simulated by generating residual velocities 
using the “population” parameters calculated previously, in conjunction with Equation 17.15 A limit 
velocity was then estimated for each test. This process was repeated many times and the relative mean 
square error (RMSE) was computed for each of these tests when compared to the “true” limit

Figure 1. vs vs. vr curves of two penetration data sets

velocity. Figure 3 shows the plots of the RMSE when estimating the V10, V50, and V90 limit velocities 
as a function of the number of shots used in the simulated test. Observe that for V50 estimates for both 
the soft and hard plate, the proposed residual velocity method and logistic regression are comparably 
precise. However, when trying to estimate V10 or V90, the proposed method is significantly more precise 
than logistic regression, on the order of 1.5%. To look at it another way, the proposed method only 
requires 10 shots in a test to have the equivalent precision of a 25-shot test using logistic regression.

The final step was to evaluate the coverage of the confidence intervals16 (CI) around the limit 
velocity estimates. That is, if one computes a 90% confidence interval, does the population limit velocity 
actually lie within the confidence interval with probability 0.9? Figure 4 shows the coverage of both the 
proposed method and logistic regression when computing confidence intervals for V10, V50, and V90 
estimates when a 90% confidence interval is requested. Observe that logistic regression generally 
overshoots the desired coverage. At first, this result may seem to favor logistic regression; however, what 
this implies that logistic regression will, on average, construct confidence intervals that are larger than 
necessary. Figure 5 shows the average confidence interval widths for both the proposed method and 
logistic regression.

Note that logistic regression’s confidence interval widths are on the order of one-and-a-half to two 
times as large as the proposed method. Consequently, when you evaluate data using logistic regression, 
you will have significantly less confidence in your results than if you evaluated the same data using the 
proposed method, potentially by a factor of 1.5-2.

15 Assuming this distribution is justified based on the results of the Q-Q plots.
16 Confidence interval is the interval bounded by the lower confidence bound and the upper confidence bound.

p p
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Figure 2. Q-Q Plots of ln(u) against a normal distribution for soft (left) and hard (right) metallic plate 
data

Figure 3. RMSE of limit velocity estimates vs. # of rounds in simulated tests for soft (left) and hard
(right) metallic plate data
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Figure 4. 90% CI coverage vs. # of rounds in simulated tests for soft (left) and hard (right) metallic 
plate data

Figure 5. Avg. width of estimated 90% CI vs. # of rounds in simulated tests for soft (left) and hard
(right) metallic plate data

4. FUTURE WORK

4.1 Live Fire Testing and Validation

The authors plan to further validate the limit velocity estimation method proposed by this paper. This 
will include augmenting the current data set by testing simple geometric penetrators against a wider range 
of targets, to include metals and ceramics, as well as any other materials deemed appropriate. 
Additionally, the authors plan on testing legacy military ammunition against various personal armour 
targets, to determine if the proposed methodology is robust enough to handle other complex dynamical 
interactions.

4.2 Test Algorithm Development

The development of the sister test algorithm to the modelling technique described in this paper is still in 
its early stages, but a few key differences from currently used adaptive test methods are noteworthy. In 
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3POD and other traditional binary test methods, testing requires the observation of both perforation and 
no-perforation results to “home in” on the velocity region of interest. If during testing only perforations 
or no-perforations are observed, nothing of real use can be done with this data. Due to the nature of the 
modelling technique described in this paper, any no-perforation is essentially a sub-optimal data point, 
where no continuous residual data can be gleaned. This means that the test algorithm in development 
will focus on adaptively approaching the point at which residual velocity is estimated to reach zero 
without going over, starting at higher striking velocities and moving to lower striking velocities. 
Optimally efficient placement of test points to formulate the model will likely be along high leverage 
inflection points on the logistic regression curve. The details with regard to the desired spacing, starting 
point, and number of samples are still in development. 
 
 
5. CONCLUSION 
 
In this paper, the authors derived and formalised a new methodology for estimating limit velocities by 
analysing residual velocity data. They also demonstrated via test data and numerical simulation that the 
inclusion of this additional continuous data significantly improves both precision and efficiency with 
regard to the estimation of limit velocities with respect to the metallic targets analysed. 

The derivations in this paper were based on material-agnostic principles; mainly, Newton’s Law, 
smoothness and monotonicity of the velocity retardation function, zero retardation force at termination 
of transient, and existence of a Taylor series expansion about the limit velocity. Thus, while the test data 
analysed in this paper demonstrated applicability to simple metallic targets, the authors posit that the 
methodology is sufficiently generic to apply to a wide range of penetrators and targets, to include 
personal armour targets. 

Future work was discussed that will seek to continue to validate and refine the methodology, as 
well as investigate adaptive testing methods to further increase testing efficiency. 
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