2025 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW 2025)

Tucson, Arizona, USA 28 February - 4 March 2025

Pages 1-805

IEEE Catalog Number: CFP25B39-POD **ISBN:**

979-8-3315-3663-3

Copyright © 2025 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP25B39-POD
ISBN (Print-On-Demand):	979-8-3315-3663-3
ISBN (Online):	979-8-3315-3662-6
ISSN:	2572-4398

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2025 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW) WACVW 2025

Table of Contents

Message from the Worksho	p Chairs			v
--------------------------	----------	--	--	----------

2nd CV4Smalls Workshop Computer Vision with Small Data: A Focus on Infants, Toddlers, and the Elderly (CV4Small)

 Experimenting with Affective Computing Models in Video Interviews with Spanish-speaking Older Adults
Applying Computer Vision to Analyze Self-Injurious Behaviors in Children with Autism Spectrum Disorder 11 Ayda Eghbalian (University of Texas, USA), Md Mushfiqur Azam 11 (University of Texas, USA), Katie Holloway (University of Texas, USA), 12 Leslie Neely (University of Texas, USA), and Kevin Desai (University of Texas, USA) 13 of Texas, USA) 14
Automatic Temporal Segmentation for Post-Stroke Rehabilitation: A Keypoint Detection and Temporal Segmentation Approach for Small Datasets
SEER-ZSL: Semantic Encoder-Enhanced Representations for Generalized Zero-Shot Learning 30 William Heyden (Norwegian University of Life Sciences), Habib Ullah (Norwegian University of Life Sciences), Muhammad Salman Siddiqui (Norwegian University of Life Sciences), and Fadi Al Machot (Norwegian University of Life Sciences)

Classification of Infant Sleep–Wake States from Natural Overnight In-Crib Sleep Videos
UniMotion: Bridging 2D and 3D Representations for Human Motion Prediction
CST: Character State Transformer for Object-Conditioned Human Motion Prediction
 Advancing Multi-Person Tracking for Autism Behavior Analysis: Challenges, Opportunities, and Future Directions in Clinical Settings
Iris Recognition for Infants

ULTRRA: Unconstrained Large-scale Three-dimensional Reconstruction and Rendering across Altitudes (ULTRRA)

4th Workshop on Image/Video/Audio Quality in Computer Vision and Generative AI (ImageQuality)

Mahalanobis k-NN: A Statistical Lens for Robust Point-Cloud Registrations Tejas Anvekar (University of Wyoming) and Shivanand Venkanna Sheshappanavar (University of Wyoming)	93
Improving Human Pose-Conditioned Generation: Fine-tuning ControlNet Models with	400
Reinforcement Learning	103
Jeonghwan Lee (Yonsei University), Heywon Yun (Yonsei University),	
Jimin Kim (Ewha Womans University), and Homa Fashandi (LGE Toronto AI	
Lab)	

PQD: Post-training Quantization for Efficient Diffusion Models
 High-Fidelity 4x Neural Reconstruction of Real-time Path Traced Images
LatentPS: Image Editing Using Latent Representations in Diffusion Models
Lights, Camera, Matching: The Role of Image Illumination in Fair Face Recognition
Quantifying Generative Stability: Mode Collapse Entropy Score for Mode Diversity Evaluation
Jens Duym (University of Antwerp), José Antonio Oramas Mogrovejo (University of Antwerp), and Ali Anwar (University of Antwerp)
Similarity Trajectories: Linking Sampling Process to Artifacts in Diffusion-Generated
Images 160 Dennis Menn (University of Texas at Austin), Feng Liang (University of Texas at Austin), Hung-Yueh Chiang (University of Texas at Austin), and Diana Marculescu (University of Texas at Austin) 160
A Distortion Aware Image Quality Assessment Model
MambaTron: Efficient Cross-Modal Point Cloud Enhancement using Aggregate Selective State Space Modeling
Diffusion Prism: Enhancing Diversity and Morphology Consistency in Mask-to-Image Diffusion 191 Hao Wang (Clemson University, USA), Xiwen Chen (Clemson University, USA), Ashish Bastola (Clemson University, USA), Jiayou Qin (Stevens Institute of Technology, USA), and Abolfazl Razi (Clemson University, USA)
TE-NeRF: Triplane-Enhanced Neural Radiance Field for Artifact-Free Human Rendering
IP-FaceDiff: Identity-Preserving Facial Video Editing with Diffusion

SST-EM: Advanced Metrics for Evaluating Semantic, Spatial and Temporal Aspects in Video Editing	2
Varun Biyyala (Yeshiva University), Bharat Chanderprakash Kathuria (Yeshiva University), Jialu Li (Yeshiva University), and Youshan Zhang (Yeshiva University)	
Confident Pseudo-labeled Diffusion Augmentation for Canine Cardiomegaly Detection	2
Revealing Palimpsests with Latent Diffusion Models: A Generative Approach to Image Inpainting and Handwriting Reconstruction	2
Unsupervised Generative Approach for Anomaly Detection to Enhance the Quality of Unseen Medical Datasets	0
Zhemin Zhang (Arizona State University), Bhavika Patel (Mayo Clinic, AZ), Bhavik Patel (Mayo Clinic, AZ), and Imon Banerjee (Mayo Clinic, AZ)	5
Sparse Mixture-of-Experts for Non-Uniform Noise Reduction in MRI Images	0
 HipyrNet: Hypernet-Guided Feature Pyramid network for mixed-exposure correction	9
DaBiT: Depth and Blur informed Transformer for Video Deblurring	3
LS-GAN: Human Motion Synthesis with Latent-space GANs	Ð
 Advancing Super-Resolution in Neural Radiance Fields via Variational Diffusion Strategies	Э

V3SC – Video Surveillance Systems in Smart Cities: Integrating Traditional Cameras with High-Altitude and Advanced Monitoring Technologies (V3SC)

AttriVision: Advancing Generalization in Pedestrian Attribute Recognition using CLIP	7
 Video-to-Text Pedestrian Monitoring (VTPM): Leveraging Large Language Models for Privacy-Preserve Pedestrian Activity Monitoring at Intersections	:9
TakuNet: an Energy-Efficient CNN for Real-Time Inference on Embedded UAV systems in Emergency Response Scenarios Daniel Rossi (University of Modena and Reggio Emilia, Italy), Guido Borghi (University of Modena and Reggio Emilia, Italy), and Roberto Vezzani (University of Modena and Reggio Emilia, Italy)	9

Gaze meets Computer Vision (GMCV): Bridging Human Attention and Machine Perception (GMCV)

Causal Representation-Based Domain Generalization on Gaze Estimation	49
 Human Gaze Improves Vision Transformers by Token Masking	59
 Addressing Age Bias in the Application of Appearance-Based Gaze-Tracking for Older Adults 36 Manuela Kunz (National Research Council Canada, Canada), Kathleen C. Fraser (National Research Council Canada, Canada), Bruce Wallace (Carleton University, Canada), Frank Knoefel (Elisabeth Bruyere Hospital, Canada), Rafik Goubran (Carleton University, Canada), Sina Shafiyan (University Ottawa, Canada), and Neil Thomas (Elisabeth Bruyere Hospital, Canada) 	69
VISTA: A Visual and Textual Attention Dataset for Interpreting Multimodal Models	78
On Segmenting Pupil Contours in Terms of Elliptical Fourier Series	86
FlatTrack: Eye-tracking with ultra-thin lensless cameras	96

GeoCV: Computer Vision for Geospatial Image Analysis (GeoCV)

aLiSa-NeRF: Neural Radiance Field with Pinhole Camera Images, LiDAR point clouds and atellite Imagery for Urban Scene Representation	05
dvancing Open-Set Object Detection in Remote Sensing Using Multimodal Large Language fodel	14
University Pune) daptive Clustering for Efficient Phenotype Segmentation of UAV Hyperspectral Data	22
 Zero-Shot Learning Approach for Ephemeral Gully Detection from Remote Sensing using ision Language Models	32
emporal Resilience in Geo-Localization: Adapting to the Continuous Evolution of Urban and ural Environments	42
recipFormer: Efficient Transformer for Precipitation Downscaling	52
rossModalityDiffusion: Multi-Modal Novel View Synthesis with Unified Intermediate epresentation	61
nhancing Remote Sensing Representations Through Mixed-Modality Masked Autoencoding47 Ori Linial (Google), George Leifman (Google), Yochai Blau (Google), Nadav Sherman (Google), Yotam Gigi (Google), Wojciech Sirko (Google), and Genady Beryozkin (Google)	70

Mapping Refugee Camps with AI: A Benchmark Dataset and Baseline Models for Humanitarian Applications	480
Amrita Gupta (Microsoft, United States of America), Anthony Ortiz (Microsoft, United States of America), Simone Fobi (Microsoft, United States of America), Duncan Kebut (Humanitarian OpenStreetMap Team, Kenya), Seema Iyer (USA for UNHCR, United States of America), Rahul Dodhia (Microsoft, United States of America), and Juan Lavista-Ferres (Microsoft, United States of America)	
Leveraging Satellite Image Time Series for Accurate Extreme Event Detection Heng Fang (KTH Royal Institute of Technology, Sweden) and Hossein Azizpour (KTH Royal Institute of Technology, Sweden)	489
MD-Glow: Multi-task Despeckling Glow for SAR Image Enhancement Shunsuke Takao (University of Tsukuba)	499
Multiresolution Fusion and Classification of Hyperspectral and Panchromatic Remote Sensing Images Martina Pastorino (University of Genoa), Gabriele Moser (University of Genoa), Sebastiano B. Serpico (University of Genoa), and Josiane Zerubia (Inria, Universite Cote d'Azur)	507
ProMM-RS: Exploring Probabilistic learning for Multi-Modal Remote Sensing Image Representations Nicolas Houdré (Université Paris Cité, France), Diego Marcos (INRIA, France), Dino Ienco (INRAE, France), Laurent Wendling (Université Paris Cité, France), Camille Kurtz (Université Paris Cité, France), and Sylvain Lobry (Université Paris Cité, France)	517
Dfilled: Repurposing Edge-Enhancing Diffusion for Guided DSM Void Filling Daniel Panangian (German Aerospace Center) and Ksenia Bittner (German Aerospace Center)	526
Enhancing Worldwide Image Geolocation by Ensembling Satellite-Based Ground-Level Attribute Predictors Bianco Michael (Clarifai Inc.), David Eigen (Clarifai Inc.), and Michael Gormish (Clarifai Inc.)	. 535
Hyperspectral Pansharpening with Transformer-based Spectral Diffusion Priors Hongcheng Jiang (University of Missouri Kansas City) and ZhiQiang Chen (University of Missouri Kansas City)	544
Direction guided Segmentation and Vectorisation of curbstones from high-resolution ortho-images <i>Mariya Jose (Leibniz University Hannover), Stefan Auer (German</i> <i>Aerospace Center), and Jiaojiao Tian (German Aerospace Center)</i>	554
Layer Optimized Spatial Spectral Masked Autoencoder for Semantic Segmentation of Hyperspectral Imagery Aaron Perez (University of Houston) and Saurabh Prasad (University of Houston)	562
Pre-training of Auto-generated Synthetic 3D Point Cloud Segmentation for Outdoor Scene Takayuki Shinohara (National Institute of Advanced Industrial Science and Technology)	. 571
FuseForm: Multimodal Transformer for Semantic Segmentation Justin McMillen (University of South Florida) and Yasin Yilmaz (University of South Florida)	. 581

The First Workshop on Out-of-Label Hazards in Autonomous Driving (COOOL)

Robustness to Perturbations in the Frequency Domain: Neural Network Verification and Certified Training	591
Model Weights Reflect a Continuous Space of Input Image Domains Simen Cassiman (KU Leuven, Belgium), Marc Proesmans (KU Leuven, Belgium), Tinne Tuytelaars (KU Leuven, Belgium), and Luc Van Gool (em. KU Leuven, Belgium; INSAIT, Bulgaria)	501
Zero-shot hazard identification in Autonomous Driving: A Case Study on the COOOL Benchmark (Lukas Picek (INRIA / University of West Bohemia), Vojtech Cermak (Czech Technical University in Prague), and Marek Hanzl (University of West Bohemia)	511
Interpreting the Unexpected: A Multimodal Framework for Out-of-Label Hazard Detection and Explanation in Autonomous Driving	521
SGNetPose+: Stepwise Goal-Driven Networks with Pose Information for Trajectory Prediction in Autonomous Driving	529
Open-World Hazard Detection and Captioning for Autonomous Driving with a Unified Multimodal Pipeline Parisa Hatami (University of Tennessee at Chattanooga), Maged Shoman (University of Tennessee), and Mina Sartipi (University of Tennessee Chattanooga)	638

The 2nd Workshop on Artificial Intelligence for Multimedia Forensics and Disinformation Detection (AI4MFDD 2025)

DiffFake: Exposing Deepfakes using Differential Anomaly Detection Sotirios Stamnas (University of Warwick, United Kingdom) and Victor Sanchez (University of Warwick, United Kingdom)	647
Improving the Perturbation-Based Explanation of Deepfake Detectors Through the Use of	
Adversarially-Generated Samples	658
Konstantinos Tsigos (Information Technologies Institute - CERTH),	
Evlampios Apostolidis (Information Technologies Institute - CERTH),	
and Vasileios Mezaris (Information Technologies Institute - CERTH)	

IDTrust: Deep Identity Document Quality Detection with Bandpass Filtering
HFMF: Hierarchical Fusion Meets Multi-Stream Models for Deepfake Detection
GrDT: Towards Robust Deepfake Detection using Geometric Representation Distribution and Texture
FoundPAD: Foundation Models Reloaded for Face Presentation Attack Detection
Disharmony: Forensics using Reverse Lighting Harmonization
 FX-MAD: Frequency-domain Explainability and Explainability-driven Unsupervised Detection of Face Morphing Attacks
Enhancing Synthetic Generated-Images Detection through Post-Hoc Calibration
Zero-Shot Warning Generation for Misinformative Multimodal Content

Enhancing Ground-to-Aerial Image Matching for Visual Misinformation Detection Using	
Semantic Segmentation	747
Emanuele Mule (Sapienza University of Rome), Matteo Pannacci (Sapienza	
University of Rome), Ali Ghasemi Goudarzi (Sapienza University of	
Rome), Francesco Pro (Sapienza University of Rome), Lorenzo Papa	
(Sapienza University of Rome), Luca Maiano (Sapienza University of	
Rome), and Irene Amerini (Sapienza University of Rome)	
Zero-training fraud detection in a large messaging platform?	756
Stephane Schwarz (University of Campinas, Brazil), Paulo Fonseca	
(Sinch AB, Sweden), and Anderson Rocha (University of Campinas,	
Brazil)	

Real-World Surveillance: Applications and Challenges 5th (RWS)

SSTAR: Skeleton-based Spatio-Temporal Action Recognition for Intelligent Video Surveillance and Suicide Prevention in Metro Stations
YOLO11-JDE: Fast and Accurate Multi-Object Tracking with Self-Supervised Re-ID
Evaluation of Spatio-Temporal Small Object Detection in Real-World Adverse Weather Conditions
 Fall Detection: Leveraging Depth Information in Bayesian Networks
Interpreting Face Recognition Templates using Natural Language Descriptions
MCTR: Multi Camera Tracking Transformer
Joint Audio-Visual Idling Vehicle Detection with Streamlined Input Dependencies

Simultaneous Multi-Object Multi-Camera Trajectory Forecasting (SMO-MCTF)	837
Amey Noolkar (University of Glasgow, UK) and Victor Sanchez	
(University of Warwick, UK)	
B-FPGM: Lightweight Face Detection via Bayesian-Optimized Soft FPGM Pruning	844
Nikolaos Kaparinos (CERTH-ITI) and Vasileios Mezaris (CERTH-ITI)	

EVGEN: "Event-based Vision in the Era of Generative AI" – Transforming Perception and Visual Innovation (EVGEN)

BeSplat: Gaussian Splatting from a Single Blurry Image and Event Stream	t
Simple Transformer with Single Leaky Neuron for Event Vision	J
Combined Physics and Event Camera Simulator for Slip Detection	
Continuous Histogram for Event-based Vision Camera Systems	

Ethical development and evaluation of multi-modal AI in healthcare (EMMA)

3rdWorkshop on Large Language and Vision Models for Autonomous Driving (LLVMAD)

Language-Driven Active Learning for Diverse Open-Set 3D Object Detection	¥0
SenseRAG: Constructing Environmental Knowledge Bases with Proactive Querying for LLM-Based Autonomous Driving	99
Xuewen Luo (Monash University), Chenxi Liu (University of Utah), Fan Ding (Monash University), Fengze Yang (University of Utah), Yang Zhou (Texas A&M University), Junnyong Loo (Monash University), and Hwa Hui Tew (Monash University)	
Glimpse of MCQ based VQA in Road & Traffic Scenarios	17
 OpenEMMA: Open-Source Multimodal Model for End-to-End Autonomous Driving	.1

Position: Prospective of Autonomous Driving - Multimodal LLMs, World Models, Embodied Intelligence, AI Alignment, and Mamba
Yunsheng Ma (Purdue University), Wenqian Ye (University of Virginia), Can Cui (Purdue University), Haiming Zhang (CUHK–SZ), Shuo Xing (Texas A&M University), Fucai Ke (Monash University), Jinhong Wang (Zhejiang University), Chenglin Miao (Iowa State University), Jintai Chen (HKUST-GZ), Hamid Rezatofighi (Monash University), Zhen Li (CUHK–SZ), Guangtao Zheng (University of Virginia), Chao Zheng (Tencent), Tianjiao He (University of Toronto), Manmohan Chandraker (University of California San Diego), Burhaneddin Yaman (Bosch Center for Artificial Intelligence), Xin Ye (Bosch Center for Artificial Intelligence), Hang Zhao (Tsinghua University), and Xu Cao (University of Illinois Urbana-Champaign)
 Evaluating Multimodal Vision-Language Model Prompting Strategies for Visual Question Answering in Road Scene Understanding
 Scenario Understanding of Traffic Scenes Through Large Visual Language Models
Enhancing Weakly-Supervised Object Detection on Static Images through (Hallucinated) Motion
Query3D: LLM-Powered Open-Vocabulary Scene Segmentation with Language Embedded 3D Gaussians
 ScVLM: Enhancing Vision-Language Model for Safety-Critical Event Understanding
 VLMine: Long-Tail Data Mining with Vision Language Models

Workshop on Automated Spatial and Temporal Anomaly Detection (ASTAD)

ComplexVAD: Detecting Interaction Anomalies in Video	3
ML-JET: A Benchmark Dataset for Classifying Heavy Ion Collisions	3
AnoFPDM: Anomaly Detection with Forward Process of Diffusion Models for Brain MRI	3
 Exploring Pose-Based Anomaly Detection for Retail Security: A Real-World Shoplifting Dataset and Benchmark	3
PCAD: A Real-World Dataset for 6D Pose Industrial Anomaly Detection	2

The International Workshop on Human-Autonomous Vehicle Interaction (HAVI)

AAT-DA: Accident Anticipation Transformer with Driver Attention Yuto Kumamoto (Nagoya University), Kento Ohtani (Nagoya University), Daiki Suzuki (DENSO CORPORATION), Minori Yamataka (DENSO CORPORATION), and Kazuya Takeda (Nagoya University)	. 1052
Snapshot: Towards Application-centered Models for Pedestrian Trajectory Prediction in	
Urban Traffic Environments	1062
Nico Uhlemann (Technische Universität München (TUM), Germany), Yipeng	
Zhou (Technische Universität München (TUM), Germany), Tobias Simeon	
Mohr (Technische Universität München (TUM), Germany), and Markus	
Lienkamp (Technische Universität München (TUM), Germany)	

"What's Happening"- A Human-centered Multimodal Interpreter Explaining the Actions of	
Autonomous Vehicles	1073
Xuewen Luo (Monash University), Fan Ding (Monash University),	
Rishikesh Panda (BITS Pilani K K Birla Goa Campus), Ruiqi Chen	
(University of Washington), Junnyong Loo (Monash University), and	
Shuyun Zhang (King's College London)	
Deep Learning-based rPPG Models towards Automotive Applications: A Benchmark Study	1081
Tayssir Bouraffa (Chalmers University of Technology Department of	
Computer Science and Engineering Gothenburg, Sweden), Dimitrios	

2nd Workshop on Computer Vision for Earth Observation Applications (CV4EO)

Koutsakis (Chalmers University of Technology Gothenburg, Sweden), and Salvija Zelvyte (Chalmers University of Technology Gothenburg, Sweden)

Location generalizability of image-based air quality models
 FineAir: Finest-grained Airplanes in High-resolution Satellite Images
Model Compression Meets Resolution Scaling for Efficient Remote Sensing Classification
Adaptive Structure-Aware Connectivity-Preserving Loss for Improved Road Segmentation in Remote Sensing Images
Interactive Rotated Object Detection for Novel Class Detection in Remotely Sensed Imagery 1129 Marvin Burges (TU Wien, Austria), Philipe Ambrozio Dias (Oak Ridge National Laboratory, USA), Dalton Lunga (Oak Ridge National Laboratory, USA), Carson Woody (Oak Ridge National Laboratory, USA), and Sarah Walters (Oak Ridge National Laboratory, USA)
 EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision

Semantic Neural Radiance Fields for Multi-Date Satellite Data	
Valentin Wagner (Fraunhofer IOSB), Sebastian Bullinger (Fraunhofer	
IOSB), Christoph Bodensteiner (Fraunhofer IOSB), and Michael Arens	
(Fraunhofer IOSB)	

3rd Workshop on Computer Vision for Winter Sports (CV4WS)

 SkipClick: Combining Quick Responses and Low-Level Features for Interactive Segmentation in Winter Sports Contexts
Gate-Shift-Pose: Enhancing Action Recognition in Sports with Skeleton Information
Towards long-term player tracking with graph hierarchies and domain-specific features
CLaP - Contrast, Label, Predict: a quest for cheaper labeling in 3D human pose estimation 1186 Davide Cavicchini (University of Trento, Italy), Alessia Pivotto (University of Trento, Italy), Sofia Lorengo (University of Trento, Italy), Andrea Rosani (Free University of Bozen-Bolzano, Italy), and Nicola Garau (University of Trento, Italy)

VisionDocs: 1st Workshop on Computer Vision Systems for Document Analysis and Recognition (VisionDocs)

Mixed-Precision is All You Need for Efficient Document Image Classification	} 5
Improving the Identification of Layers in 3D Images of Ancient Papyrus using Artificial	
Neural Networks)4
Nicolas Klenert (Zuse Institute Berlin, Germany), Finn Schwoerer (Zuse	
Institute Berlin, Germany), Noushin Hajarolasvadi (Zuse Institute	
Berlin, Germany), Siloé Bournez (Zuse Institute Berlin, Germany),	
Tobias Arlt (Helmholtz-Zentrum Berlin für Materialien und Energie,	
Germany), Heinz-Eberhard Mahnke (Helmholtz-Zentrum Berlin für	
Materialien und Energie, Germany), Verena Lepper (Ägyptisches Museum	
und Papyrussammlung, Germany), and Daniel Baum (Zuse Institute Berlin,	
Germany)	
DocSum: Domain-Adaptive Pre-training for Document Abstractive Summarization	13
Phan Phuong Mai Chau (University of Science and Technology of Hanoi),	
Souhail Bakkali (L3i-lab, La Rochelle Université), and Antoine Doucet	
(L3i-lab, La Rochelle Université)	

Multi-Modal Large Language Model driven Augmented Reality Situated Visualization: the Case of Wine Recognition
Low-Rank Adaptation vs. Fine-Tuning for Handwritten Text Recognition
RAPTOR: Refined Approach for Product Table Object Recognition
A Comparative Analysis of OCR Models on Diverse Datasets: Insights from Memes and Hiertext Dataset
Offline Signature Verification in the Banking Domain

2nd Physical Retail AI Workshop (PRAW)

WTPose: Waterfall Transformer for Multi-person Pose Estimation Navin Ranjan (Rochester Institute of Technology), Bruno Artacho (Rochester Institute of Technology), and Andreas Savakis (Rochester Institute of Technology)	1274
What Matters when Building Vision Language Models for Product Image Analysis?	1282
Ameni Trabelsi (Amazon, USA), Maria Zontak (Amazon, USA), Yiming Qian	
(Amazon, Canada), Brian Jackson (Amazon, USA), Suleiman Khan (Amazon,	
USA), and Umit Batur (Amazon, USA)	

Vision-Language Models (VLMs) in Open Traffic Scene Understanding

Synthetic Realities and Data in Biometric Analysis and Security (SynRDinBAS)

 SIGN-GAIL: Rewarding Online Signature Generation for Digital Imitation	1292
Exploring Correlated Facial Attributes in Text-to-Image Models: Unintended Consequences in Synthetic Face Generation	1302
On the generalisation capability of local surface frames in detecting diffusion-based facial images	1312
 Generating Realistic Forehead-Creases for User Verification via Conditioned Piecewise Polynomial Curves	1322
 Face-swapping based Data Augmentation for ID Document and Selfie Face Verification	1331
Unified Face Matching and Physical-Digital Spoofing Attack Detection	1339
Latent Diffusion Shield - Mitigating Malicious Use of Diffusion Models through Latent Space Adversarial Perturbations	1350

Parallel Prints: Generating Realistic Cancelable Fingerprint Templates
TextureCrop: Enhancing Synthetic Image Detection through Texture-based Cropping 1369 Despina Konstantinidou (Center for Research and Technology Hellas), Christos Koutlis (Center for Research and Technology Hellas), and Symeon Papadopoulos (Center for Research and Technology Hellas)
Digi2Real: Bridging the Realism Gap in Synthetic Data Face Recognition via Foundation Models

2nd Workshop on the Applications of Computational Imaging (WACI)

Fashionability-Enhancing Outfit Image Editing with Conditional Diffusion Models
Segment Anything in Light Fields for Real-Time Applications via Constrained Prompting 1400 Nikolai Goncharov (University of Sydney) and Donald Dansereau (University of Sydney)
M-GAID: A Real-World Dataset for Ghosting Artifact Detection and Removal in Mobile Imaging. 1407 Muneeb A Khan (Sangmyung University, South Korea), Hyungsub Kim (Sangmyung University, South Korea), Jiho Eum (Sangmyung University, South Korea), Yihyun Myung (Sangmyung University, South Korea), Yujin Choi (Sangmyung University, South Korea), and Heemin Park (Sangmyung University, South Korea)

MaCVi 2025: 3rd Workshop on Maritime Computer Vision (MaCVi)

Automatic Fish Age Prediction using Deep Machine Learning: Combining Otolith Image, NIR	
Spectra and Metadata Features	417
Aotian Zheng (University of Washington), Jenq-Neng Hwang (University of Washington), Yudong Liu (University of Washington), Qiancheng Li	
of Washington), Yudong Liu (University of Washington), Qiancheng Li	
(University of Washington), Beverly Barnett (Southeast Fisheries	
Science Center), Farron Wallace (Southeast Fisheries Science Center),	
Irina Benson (Alaska Fisheries Science Center), and Thomas Helser	
(Alaska Fisheries Science Center)	
Marine Event Vision: Harnessing Event Cameras For Robust Object Detection In Marine	
Scenarios	425
Nenyi Kweku Nkensen Dadson (Louisiana State University, United States	
of America) and Corina Barbalata (Louisiana State University, United	
States of America)	
5	

Underwater Image Enhancement and Object Detection: Are Poor Object Detection Results On Enhanced Images Due to Missing Human Labels? Evan Lucas (Michigan Technological University), Ali Awad (Michigan Technological University), Anthony Geglio (Michigan Technological University), Shadi Moradi (Michigan Technological University), Ashraf Saleem (Michigan Technological University), Timothy Havens (Michigan Technological University), Angus Galloway (Engineering Technologies Canada Ltd.), and Sidike Paheding (Fairfield University)	1435
Camera-based Intruder Detection and Monitoring of Ship Crew Work Hours Md Mahmuddun Nabi Murad (University of South Florida, USA), Bora San Turgut (Istanbul University, Turkey), Awwab Ahmed (University of South Florida, USA), Gokhan Camliyurt (Korea Maritime and Ocean University, South Korea), and Yasin Yilmaz (University of South Florida, USA)	1441
Vessel registration number detection and recognition system Matej Fabijanic (University of Zagreb Faculty of Electrical Engineering and Computing), Fausto Ferreira (University of Zagreb Faculty of Electrical Engineering and Computing), Maja Magdalenic (University of Zagreb Faculty of Electrical Engineering and Computing), Juraj Obradovic (University of Zagreb Faculty of Electrical Engineering and Computing), Nadir Kapetanovic (University of Zagreb Faculty of Electrical Engineering and Computing), and Nikola Miskovic (University of Zagreb Faculty of Electrical Engineering and Computing)	1450

 3rd Workshop on Maritime Computer Vision (MaCVi) 2025: Challenge Results
A Framework for Imbalanced SAR Ship Classification: Curriculum Learning, Weighted Loss Functions, and a Novel Evaluation Metric
MTReD: 3D Reconstruction Dataset for Fly-over Videos of Maritime Domain
In-domain self-supervised learning for plankton image classification on a budget

 AutoFish: Dataset and Benchmark for Fine-grained Analysis of Fish	513
Navigating Coreset Selection and Model Compression for Efficient Maritime Image Classification	.523
FalconEye: Efficient Centroid-Based Object Detection for Maritime High Altitude UAV Images on Embedded Devices	.532

Workshop on Manipulation, Generative, Adversarial, and Presentation Attack in Biometrics (MAPA)

Extracting Local Information from Global Representations for Interpretable Deepfake Detection
Transferable Adversarial Attacks on Audio Deepfake Detection
 MADation: Face Morphing Attack Detection with Foundation Models
 Wavelet-Driven Generalizable Framework for Deepfake Face Forgery Detection
Metric for Evaluating Performance of Reference-Free Demorphing Methods

Face detection and recognition under real-world scenarios - dealing with deepfake	
incidents and malicious data distortions	2
Ewelina Bartuzi-Trokielewicz (NASK - National Research Institute),	
Alicja Martinek (NASK - National Research Institute, AGH University of	
Kraków), and Adrian Kordas (NASK - National Research Institute)	
Exploring ChatGPT for Face Presentation Attack Detection in Zero and Few-Shot in-Context	
Learning	2
Alain Komaty (Idiap Research Institute), Hatef Otroshi Shahreza (Idiap	
Research Institute), Anjith George (Idiap Research Institute), and	
Sébastien Marcel (Idiap Research Institute)	

Author Index