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ABSTRACT: Machine learning (ML) tools have proven valuable and efficient in predicting fire behaviour of structural 
elements, including timber elements, under standard fire conditions. However, available ML analysis for structural timber 
elements under non-standard fire exposure is limited. The viability of using ML models to trace in-solid temperatures 
over time and depth in structural timber elements was explored using a dataset of axially loaded Cross-Laminated Timber 
(CLT) walls. Three supervised ML approaches were compared: Long Short-Term Memory (LSTM) Recurrent Neural 
Network, Gradient Boosting (GB), and Symbolic Regression (SR). The latter was found superior for solid-temperature 
prediction and lent support to opting for simpler and more interpretable models over more complex models. Our results 
also highlight that this problem should be framed as a traditional regression problem rather than a time-series forecast.
These findings provide valuable guidance for further ML tool development for larger timber fire datasets that capture a 
wider range of fires.

KEYWORDS: cross-laminated timber, temperature modelling, explainable machine learning, scientific machine learn-
ing, time series forecasting, symbolic regression.

1 - INTRODUCTION

Wood is a renewable resource with a competitive 
strength-to-weight ratio relative to reinforced concrete.
Specifically, engineered timber has the potential to de-
carbonise construction. Even though mass timber can 
achieve comparable fire resistance ratings as steel or con-
crete in standard fire conditions, its structural fire perfor-
mance may vary based on timber species, moisture con-
tent, chemical treatment, encapsulation, adhesive, layup, 
applied mechanical stresses, and geometry. Moreover,
compartments with exposed timber experience more in-
tense and prolonged fires than those with non-combus-
tible linings due to radiation feedback [1], [2], and struc-
tural failure may occur even after the end of flaming com-
bustionas thermal waves continue to propagate within the 
timber members [3].Hence, modelling the temperature 
evolution within structural timber both during and after a
fire is essential to accurately estimate its structural re-
sponse.
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While Finite Element Models (FEM) have been devel-
oped to approximate the behaviour of timber in compart-
ment fires, their use is constrained by long computation 
times and they were derived from standard fire test re-
sults; thus their validation range is limited and they can-
not be adapted for different fires, for example those that 
exhibit a cooling phase [4]. In contrast, Machine Learn-
ing (ML) models leverage currently available data with-
out requiring intermediate physics to be modelled explic-
itly and, once trained, can generate predictions almost in-
stantly, allowing practicing fire safety engineers to assess 
a wide range of fire scenarios efficiently [5]. Therefore, 
the opportunities for applying ML techniques to model 
the structural fire performance of timber are worth ex-
ploring. Specifically, we are interested in modelling solid 
timber temperature as it is a key determinant of strength 
and stiffness.

In this work, three ML approaches were applied to a da-
taset of 24 axially loaded Cross-Laminated Timber 
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(CLT) wall strips exposed to one-sided radiative heat ex-
posure at their mid-height. The raw dataset from [6] rec-
orded seven variables for each test: time, adhesive type, 
number of layers, heat flux, thickness, thermocouple 
depth, and in-depth temperature. 

The objective is to investigate whether ML, specifically 
scientific ML (SciML), can reliably predict the tempera-
ture evolution within the CLT wall strips, given the ge-
ometry, layup, and applied heat flux, and how SciML 
compares in performance to traditional ML.

SciML refers to a class of ML methodologies that caters 
to scientists, engineers, and policymakers in high-stakes 
applications that require trustworthy models. These mod-
els must be explainable at the very least [7], and ideally,
they should integrate domain knowledge, cause-and-ef-
fect relationships [8], and/or the physical laws governing 
a problem [9]. Black-box models are generally to be 
avoided if a SciML model with similar performance can 
be found [10] and, if used, the black-box should be ac-
companied by a post-hoc explainability method. Non-
SciML models remain purely correlational or data-driven 
and are not designed for extrapolation as they are una-
ware of physical or causal constraints in the problem and 
may even leverage spurious and unphysical correlations 
within the data to minimize a chosen error metric. For 
scientific contexts, if domain knowledge cannot be incor-
porated into a data-driven model, at the very least, it 
should be explainable so that expert users can interpret 
the model’s logic and uncover its hidden biases or prob-
lematic correlations. Thus, explainable ML can be con-
sidered a subclass of SciML and the first step towards 
curating ML for scientific discovery.

In this study, three ML models were investigated: (1) a
Long Short-Term Memory Recurrent Neural Network 
(LSTM RNN, or simply ‘LSTM’) to represent a black-
box neural network which does not require feature engi-
neering, (2) Gradient-Boosted (GB) tree methods, includ-
ing three GB algorithms (XGBoost, CatBoost, and Light 
GB Machine), which are more interpretable than LSTM 
as they involve explicit feature engineering, and (3) Sym-
bolic Regression (SR), which is an inherently interpreta-
ble ML method as it results in an explicit functional ex-
pression of the target in terms of the features.

2 - METHODOLOGY

2.1. DATASET DESCRIPTION

The dataset was collected from experiments on simply 
supported CLT wall strips exposed to one-sided radiative 
heat exposure at their mid-height on a central 300 by 300 

mm2 area while under sustained compressive load. All 
samples had a thickness of approximately 100 mm, a 
width of 300 mm, and a height of 1700 mm.

Four CLT configurations and three heating regimes re-
sulted in 12 experiments with two repeats for each con-
figuration. The three heating regimes were: (1) 50 kW/m2

to failure, (2) 50 kW/m2 for either 15 or 25 min, followed 
by a cooling phase, and (3) 15 kW/m2 to failure. In all 
cases, the applied load was kept constant. In the first two 
heating regimes, a heat flux of 50 kW/m2 was applied to 
cause ignition and sustain burning, while 15 kW/m2 was
used as an exposure below the critical heat flux for auto-
ignition. The four CLT wall configurations were distin-
guished by two types of adhesives, Polyurethane (PU)
and Melamine Formaldehyde (MF), and two layups:
three-ply and five-ply. Each record in the dataset is a tem-
perature reading at a given instant and depth from the 
heated surface. The temperatures were measured using
1.5 mm diameter Inconel sheathed, Type K thermocou-
ples inserted from the unexposed side of the wall, i.e.,
parallel to the direction of heat transfer. Table 1 describes 
the features in the original dataset. In addition, the origi-
nal dataset contained a feature for the load applied. This
was dropped as it should not be relevant to temperature 
prediction and to prevent an ML model from leveraging 
any spurious correlations between the load and the tem-
perature. 

Table 1: Description of variables in the original temperature dataset

Variable Description Input / 
Target

Signal ID Test number and thermocouple ID Unique 
identifier

Layers Number of plies (3 or 5) Input
Flux Applied radiative heat flux (kW/m2) Input

Adhesive
Binary variable that indicates which 
of two types of adhesives was used: 

0 for MF and 1 for PU.
Input

Thickness Initial wall thickness (mm) Input

Heating du-
ration

Duration for which the CLT wall 
was exposed to the heating panel 

(seconds)
Input

Depth Depth of the thermocouple from the 
exposed side (mm) Input

Time Time elapsed from the start of heat-
ing (seconds) Input

Temperature Measured temperature (°C ) Target

2.2. DATA PRE-PROCESSING

Data Cleaning

Firstly, signal streams from faulty thermocouples were 
excluded, and signal smoothing was achieved using a Sa-
vitzky-Golay filter. Next, the temperatures were capped 
at 600 °C, making the conservative assumption that char 
will have completed oxidation (i.e., conversion to ash) by 
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this temperature [11]; higher temperatures recorded 
would have been due to surface regression and thus gas 
phase temperatures. Secondly, series from samples 
heated to failure were truncated at the time the sample 
failed, whereas time series from experiments with a cool-
ing phase were truncated after five minutes of reaching a
steady state, which was determined as zero first-order and 
zero second-order time differentials. Finally, all signals
were downsampled from seconds to minutes; data loss in 
this case was prevented with prior signal smoothing.

The next step in data pre-processing was splitting the 
cleaned dataset into either two subsets (training and test-
ing) or three subsets for training, validation, and testing.

A key consideration was the time-series nature of the 
problem. In a traditional regression problem, it is as-
sumed that the observations are “i.i.d.”: independent
(each data point does not depend on any other data point) 
and identically distributed (all come from the same prob-
ability distribution). However, this is not always true for 
every dataset. Data points may be interconnected, e.g., 
spatial data, and their distributions may be time-depend-
ent, e.g., time-series data. In time-series data, the points 
are neither independent (the next data point depends on 
the past data points) nor come from the same distribution 
(the mean and variance change over time). Thus, this re-
gression problem qualifies as a Time-Series Forecast 
(TSF), as the temperature readings have a temporal order 
and sequential dependency, and the information value of 
any forecasted temperature is lost if its associated time 
stamp is not provided. Dealing with time-series data has 
several consequences relevant to the data-splitting step:

No random sampling: When the data set is split
for training, validation, and testing, the split must
respect the chronological order. Otherwise, data
leakage between the testing and training sets,
also known as look-ahead bias, will lead to non-
generalizable, over-fitted models. Past data
points should be used for training and future data
points for validation or testing.
Feature engineering: since a dataset with se-
quential dependency exhibits auto-correlation
(the target variable depends on its own past
values besides other variables), additional
features are often added to the feature set, which
are the lags, differences, or other transformations
on past values of the target variable, e.g., using
Yt-1 and Yt-2 and moving averages as features to
predict Yt at each time step t.
Static vs. Dynamic exogenous features:
Attention must be given to exogenous features
(i.e., predictors other than the transformations on
past values of the target, e.g., layers, adhesive,
flux) that are also time-dependent. In this

problem, all the exogenous features are static ex-
cept for the applied flux, as it is stepped rather 
than constant for the samples with a cooling 
phase. Thus, the applied flux is considered a 
dynamic feature, and a schedule of the applied 
flux must be provided to a TSF algorithm to 
obtain a temperature forecast. Other static 
values, such as the adhesive, number of layers, 
and initial thickness, are static features; only a 
single value is needed for each static input in the 
prediction step.

Generally, two-way splits of the original dataset into 
training and validation are common in most ML studies.
The training set is used to tune model parameters, i.e., 
calibrate it, and the validation set would be used to eval-
uate it. However, if the validation set is used to further 
refine the model, e.g., as with k-fold cross-validation, or 
to tune model hyperparameters, then the validation set no 
longer represents ‘unseen’ data and using a third set, 
called a testing set, is recommended for an objective eval-
uation of the model. 

Global Splitting Strategies

This dataset contains 12 unique experimental configura-
tions, each replicated once. In each experiment, 16 ther-
mocouples were drilled into the CLT wall sample at dif-
ferent depths. The temperature recorded over time from 
each thermocouple is considered a time series. Hence, 
there are 12 × 2 × 16 = 384 time series. Due to the dele-
tion of signals from faulty thermocouples, this number 
was reduced to 373. Another decision must be made re-
garding how a global splitting strategy might apply to all
the series. There are two options:

Split by series. For example, allocate 268 entire
series for training (70% of 373) and 116 entire
series for validation (30% of 373).
Split within series. Each of the 373 series will be
split independently using any of the local split-
ting strategies discussed next.

Local Splitting Strategies

For time-series data, there are a number of strategies that 
respect the temporal order. The most basic is the chrono-
logical split: a single train-validate split, using a given 
time as a cut-off point; all measurements recorded before 
it would be in the training set, and all points occurring 
after it would be in the validation/testing set. The down-
side of this simple strategy is that important phenomena
that tend to occur later in the series, e.g., smouldering, 
reignitions, may not make it into the training set and, 
therefore, not captured by the model unless the training 
window is made long enough to capture all desired fea-
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tures. A long training window would result in a short val-
idation window, which is problematic as the validation 
windows would almost always be in the decay phase 
where observations were very similar, leading to overly 
optimistic validation scores. 

To address the shortcomings of the single train-validate 
split, other splitting strategies employ multiple train-val-
idate splits, often used in conjunction with iterative train-
ing/validation methods. These include the rolling win-
dow (fixed-size) split, the expanding window split, and 
the stratified time-series split.

Herein, we divided the dataset into training and valida-
tion sets only; a third testing set was deemed unnecessary 
as the validation set was not used for hyperparameter tun-
ing. 

The two global splitting strategies (within series vs by se-
ries) will be examined for each of the three candidate al-
gorithms. When the by-series split was implemented, the 
allocation of each series to either the training or valida-
tion set was conducted using stratification. Within each 
set, the three heating scenarios—heated to failure, heated 
for 15 minutes, and heated for 25 minutes—were repre-
sented in the same proportions as they appear in the orig-
inal dataset. As for the within-series split, a chronological 
split was applied to each series, with the first 70% of data 
points in a series being assigned to the training set and 
the trailing 30% to the validation set. Windowing tech-
niques would have complicated the analysis by adding
another hyper-parameter that requires tuning: the win-
dow size.

Performance Metrics for Time-Series

Defining the forecast error at time t as ,
where is the actual value at time t and is the corre-
sponding prediction, Hyndman classified forecast-error 
metrics into four groups [12]:

1. Scale-dependent metrics, e.g., Mean Absolute
Error (MAE), Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), which compute
some aggregate (e.g., mean, median, geometric
mean) of the squared or absolute forecast errors
to prevent positive and negative errors offsetting
each other. As these metrics are not unit-free,
they must not be used to compare series that in-
volve different units.

2. Percentage error metrics, e.g., Mean Absolute
Percentage Error (MAPE), which aggregate the
values of , and are scale-free, so they can
be used for comparison across series with dif-
ferent units. Their disadvantage is that they are
unstable when approaches zero or is missing.

3. Relative error metrics, which aggregate the rel-
ative errors defined as where is the
forecast error of a benchmark method, usually
the naïve method. The naïve method (also called
random walk) is a benchmark forecasting
method in which the next observation is the
same as the most recent observation, i.e., 

. This may also lead to division by zero in
an individual period when the naïve forecast er-
rors are small or zero, as in the case of intermit-
tent series. An example is the Median Relative
Absolute Error.

4. Scaled error metrics account for temporal de-
pendence by comparing predictions to a base-
line forecast. The forecast error for each pe-
riod is normalized by the aggregate of squared
or absolute forecast errors generated by a base-
line method over all periods.
Unlike percentage-error or relative-error met-
rics, the denominator here is unlikely to be zero,
even in intermittent series with some missing
data, as it is calculated on the entirety of the
training set. The baseline method is typically the
naïve method or can be a more sophisticated
method, such as Autoregressive Integrated
Moving Average (ARIMA). Examples of scaled
error metrics include the Median Absolute
Scaled Error (MdASE) and the Mean Square
Scaled Error.

Besides scaled-error metrics, there are other metrics in 
the realm of forecasting that are more ‘aware’ of temporal 
dependence, such as Dynamic Time Warping Distance,
which measures the alignment of two series and is useful 
when time delays are important, and Mean Directional 
Accuracy which measures the accuracy of the forecasting 
method in predicting the correct direction of change.
Eventually, more than one metric may be needed, and the 
ideal set of metrics depends on the application and the 
forecast goals.

For this problem, we desire an interpretable error metric 
with the same units as the data (°C), e.g., MAE or RMSE
(as it is difficult to interpret an error in squared °C), or as 
a percentage (e.g., MAPE). This makes absolute error 
metrics attractive, but they do not serve as good loss func-
tions in ML methods relying on gradient descent for op-
timization, since the absolute function is not differentia-
ble everywhere, unlike the square and square root func-
tions. Hence, the RMSE provides a good balance be-
tween training speed and interpretability.

Moreover, relative error metrics should be precluded, as 
they would be skewed or undefined in the decay phase of 
the temperature-time curve, where the temperatures be-
come almost stable, introducing a risk of near-zero de-
nominators.
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Since all the time series have the same units, using scale-
dependent metrics would be acceptable. Additionally, as 
fire is a high-temperature scenario, it is highly unlikely 
that actual values would approach zero, making percent-
age-error metrics also a valid choice.

Scaled-error metrics, though, have more informational 
value than the other three classes of metrics; a sophisti-
cated forecasting method that cannot beat the naïve pre-
diction should be abandoned. For these reasons, we shall 
use the RMSE and the MdASE for training and algorithm 
selection, respectively.

For all scaled-error metrics, including MdASE, if the 
metric is less than 1, then the model performs better than 
the baseline model (here, the naïve model), and lower 
values are better, while a metric greater than 1 means the 
model performs worse than the baseline model. A value 
of 0 means the forecast exactly matches the actual values.

In contrast to the textbook formula of the baseline fore-
cast error which is often provided as 

[12], we calculated the period-wise forecast error as:

(1)

This deviation is due to setting to a static value,
namely, the initial value, because we are performing sin-
gle-shot multi-period forecasting, in which the candidate 
model at the time of prediction does not and will not have 
access to the previous value before it makes a prediction 
about the next value. Here, the candidate and naive mod-
els only know the initial value and cannot use previous 
actual values, which is representative of the reality of
structural fire modelling. The formula was built
with a business and finance context in mind, assuming 
that the periods are in days, weeks, or months and that 
model users would have access to recent sales figures, for 
example, and be able to re-run the forecasting model uti-
lizing the last period’s actual figure to improve the fore-
cast for the next period. This is obviously not the case in 
fire modelling for design, and the MdASE formula was 
adjusted accordingly to provide a fairer metric.

2.3. CANDIDATE ALGORITHMS

TSF can be implemented through several paradigms [13],
including classical forecasting methods (e.g.,  ARIMA, 
Prophet, and exponential smoothing), ML methods (e.g., 
Gradient Boosting (GB), Recurrent Neural Networks, 
equation discovery), and stochastic processes (e.g., 
Gaussian, Poisson, and Hawkes processes). Some fore-
casting methods only support autocorrelation, where only 

past values of the target variable and transformations 
thereof are used for inference. Not all of them can support 
exogenous features, i.e., interactions between the target 
time series and other predictor/external/exogenous varia-
bles or non-linear relationships between them–such mod-
els should be excluded from consideration. All analyses 
presented in this work were performed in Python.

Time-Series Forecasting with Exogenous Features

LSTM and GB are popular ML methods for TSF [14].
LSTM networks can handle non-stationary time series
(i.e., the mean and variance change over time), exoge-
nous features, and non-linear relationships and do not re-
quire explicit feature engineering. GB methods also offer 
similar capabilities and are faster to train compared to 
LSTM but require explicit feature engineering to make 
the series stationary. Three GB algorithms were tested in 
this study: XGBoost, CatBoost, and LGBM. All three GB 
models were implemented using Nixtla’s MLForecast li-
brary [15], which offers user-friendly functions for time-
series pre-processing. Stationarity is a requirement for 
the GB models, which was achieved through second-or-
der differencing [15]. Stationarity was then confirmed us-
ing the Augmented Dickey-Fuller and Kwiatkowski-
Phillips-Schmidt-Shin tests. These two tests, commonly 
referred to as ‘unit root’ tests, examine whether a time-
series variable is stationary. Two unit root tests were ap-
plied as different tests may yield contradictory results.
For the GB analysis, as it requires additional feature en-
gineering, a new feature (cumulative incident heat flux)
was added to the dynamic exogenous variables as a proxy 
for the radiant energy absorbed.

Symbolic Regression for Equation Discovery

SR is an interpretable representation learning ML method 
that searches the space of all possible mathematical for-
mulas, including transcendental functions (e.g., exponen-
tials, logarithms, and trigonometric functions), to express 
the target variable as a function of the input features. As 
such, SR results in a human-readable mathematical for-
mula of the output as a function of the inputs, e.g., 

, rather than a stream of values to
express the output. It can be considered a generalisation
of the linear regression method, except that the form of 
the function is unconstrained [16], [17].

SR analysis was conducted in this study using the Feyn
package, which is an interface to the QLattice software 
library [18]. Feyn was chosen as it is the more user-
friendly of two popular SR packages (the other being 
PySR [19]). Additional features were engineered, in ad-
dition to the original features in Table 1, such as relative 
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depth (depth ÷ initial thickness), relative time (current 
time ˗ heating duration), and the initial temperature of the 
solid.

3 - RESULTS

3.1. MODEL SELECTION

Each of the models considered in this study was run on 
the pre-processed dataset for each of the two split strate-
gies explained in §2.2. The RMSE values reported in Ta-
ble 2 are before any hyper-parameter tuning.

Table 2 Training and validation RMSE (in °C ) by type of data split for 

all ML algorithms considered (all models are untuned)

Training Validation

LSTM
By series 27310 28541

Within series 23227 21629

CatBoost
By series N/A N/A

Within series 9.64 545.89

LGBM
By series N/A N/A

Within series 8.79 632.04

XGBoost
By series N/A N/A

Within series 10.4 434.27

SR
By series 60.22 61.66

Within series 57.83 102.82

The LSTM model’s RMSE values are unacceptable, and 
this model was discarded. The model's predictions devi-
ated from the actual range of temperatures by approxi-
mately 1.65 orders of magnitude, making the model use-
less for this application. In addition, the three GB algo-
rithms could not be run for the by-series split, as the 
MLForecast framework prohibits generating predictions
for a series that did not appear in the training set. Alt-
hough the training RMSE values for the three GB models 
are less than 10 °C, the validation errors ranged from 430 
up to 630 °C. This large discrepancy indicates overfitting.

Compared to the others, the SR algorithm yielded much 
more acceptable RMSE values in validation, performing 
especially well with the by-series split, for which the 
training and validation RMSE values are not only rela-
tively low but also nearly equal, indicating that the model 
has neither over-fit nor under-fit the dataset. Thus, the SR 
algorithm and the by-series split were chosen for further 
tuning.

One of the most critical hyper-parameters in SR is com-
plexity, as it relates directly to human interpretability. In 
the QLattice library, maximum complexity is the maxi-
mum allowable number of arcs in a graph model of the 
AI-generated expression, such as in Figure 1 [20] and,
therefore, its inverse is a proxy for the degree of parsi-
mony. A larger maximum complexity value set by the 

user enables QLattice to discover longer and more com-
plex expressions corresponding to a greater number of
feature interactions. Since the temperature profiles for 
samples with and without a cooling phase have different 
shapes, it was challenging to find a single expression that 
could capture the two heating scenarios while also re-
maining relatively parsimonious. Therefore, the SR algo-
rithm was run independently for the two heating scenar-
ios to generate relatively more human interpretable ex-
pressions without degrading performance. The perfor-
mance of the independent expressions was evaluated and 
compared to the all-cases SR expression, as shown in Ta-
ble 3.

Table 3 SR performance metrics for the 70-30 split by series, consider-

ing the heating scenarios collectively and separately

All Cases With 
Cooling

Without 
Cooling

RMSE 
(°C )

Training 60.22 42.55 46.17
Validation 61.66 49.14 52.59

MAPE
Training 0.730 0.5164 0.379

Validation 0.724 0.5336 0.383
Overall 
MdASE

Training 2 0.43 1.19
Validation 2.09 0.66 1.41

3.2. SYMBOLIC REGRESSION EXPRESSIONS

Heating for a fixed period with a cooling phase

The SR-generated expression of Temperature T (°C) as a 
function of time t (minutes) and depth d (mm) corre-
sponding to a maximum complexity of 10 for samples 
with a cooling phase is provided in Eq. (2). The corre-
sponding graph model is given in Figure 1.

Figure 1. Graph model for the SR expression generated for samples 

with a cooling phase

(2)

Where, = ,

=

=

= .
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is the heating duration (minutes), and is the ini-
tial temperature of the solid.

Continuous heating at a constant flux

Similarly, the SR-generated expression for the case of 
continuous heating at constant flux to failure is given in 
(3), while the corresponding graph model is given in Fig-
ure 2.

(3)

Where, = , = , =

, =

= .

L is the initial thickness of the wall (mm) and is the 
applied flux (kW/m2).

Figure 2 Graph model for the SR expression generated for samples 

heated to failure

4 - DISCUSSION

Plots of the predicted temperature profiles at various 
depths, superimposed on the actual measurements, are 
given in Figure 3 and Figure 4 for the two SR expressions 
applied to their respective heating cases. where signal 
streams were grouped into each plot using experimental 
treatment. The plot titles are coded in the format 
L[a]_[b]_F[c]_H[d], where [a] is the number of layers,
[b] is the adhesive, [c] is the flux, and [d] is the heating
scenario: HF indicates heating to failure, H900 heating
for 900 seconds (15 min), and H1500 heating for 1500
seconds (25 min).

For the heating-to-failure case, the predictions generally 
agree with the actual measurements. For experiments 
with a cooling phase, however, the SR model seems ca-
pable of capturing the overall shape of the graphs but 
does not always respect the initial temperature; the SR 
algorithm’s objective, after all, is to optimise the overall 
error metric (here, this is the MSE) for all points within 
the given complexity constraint. Although the allowed 
complexity could be increased in the hope of achieving 

more complex models that better capture the initial 
growth phase, we notice that Equations (2) and (3) al-
ready contain nested exponentials, which may not be 
parsimonious, and increasing the complexity further
would have resulted in less interpretable functional ex-
pressions. 

From Table 2, we notice that for SR, a global split by time 
series greatly improved the validation RMSE compared 
to a within-series split. This may be due to the former 
strategy allowing the model to learn the decay phase as it 
is allowed to train on entire series from start to finish. In 
contrast, a within-series split would not allow the model 
to fully train on the decay phase of any series.

The error metrics in Table 3 showed significant improve-
ment when the heating scenarios were considered sepa-
rately compared to being lumped under one model. Look-
ing at the case-specific models, the RMSE values imply 
that deviations 49 - 52 °C from the actual temperature are 
expected, corresponding to a percentage error of 38-53%.

In terms of the MdASE, the only model that could exceed 
the naïve forecast was the cooling case model, while the 
others had overall MdASE values greater than 1 when
averaged over all the series. This does not necessarily 
mean that these models cannot provide insights. For ex-
ample, given the maximum complexity constraint, none 
of the case-specific models included the adhesive or the 
number of layers in the functional expression, which tells 
us that these are likely insignificant predictors of temper-
ature, as would be expected.

Interestingly, the cooling-case expression was not a func-
tion of the magnitude of applied flux. One reason may be 
that the heat flux was the same (0 kW/m²) for all cooling 
phases. Another reason may be that only samples heated 
with 50 kW/m² actually exhibited a cooling phase; thus, 
there was no variation in heat flux for the algorithm to 
learn from in the case of heating followed by cooling.

5 - CONCLUSION

ML can be a very useful modelling tool for scientific and 
engineering simulations, and interpretable ML can ex-
ceed the performance of black-box models such as LSTM 
and GB. This study applied three ML models to the tem-
perature readings collected from experiments with loaded 
CLT wall strips exposed to one-sided heat radiation with 
varying experimental treatments. Symbolic Regression, 
an interpretable ML model, significantly outperformed a 
neural network, LSTM, and three gradient-boosting tech-
niques for in-solid time-temperature prediction. This is 
advantageous since we desire easily interpretable models 
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in scientific applications where users are interested in in-
specting the model's logic and the reasoning behind its 
predictions. Moreover, more complex models would not 
be justified if a simple, interpretable model that performs 
well can be found [10]. The functional expressions gen-
erated by SR were reported, and performance was further 
improved when separate expressions were generated for 
continuous heating versus heating for a fixed period fol-
lowed by a cooling phase. 

However, when applied in the context of predicting tem-
perature or other material states over time, special care 
must be taken in data preparation to respect the temporal 
order and prevent data leakage, as well as in selecting 
meaningful and robust performance metrics. Modellers 
should be aware of deployment considerations; when 
their model goes out to the real world, would users make 
one-shot multi-period predictions based on only the ini-
tial value, or would the model have access to actual val-
ues of the previous periods before making the next pre-
diction? It is often the former for most engineering simu-
lations, and ML modelling choices should align with that 
understanding. This can be challenging given that most 
textbook sources and out-of-the-box implementations on 
forecasting were made for a business context. Still, ad-

justments are necessary if TSF is to be applied to engi-
neering simulation, and it is hoped that this work pro-
vides pointers to best practices for readers interested in 
TSF for engineering simulations.

The dataset and source code are available upon request.

6 - FUTURE WORK

This study aimed to verify whether SciML can model the 
solid temperatures developed in timber members in sim-
ple fire exposures where the exposure is known and con-
trolled. Our future work is to investigate further whether 
ML can also substitute for both a one-zone fire model and 
FEA to model structural thermal response for uncon-
trolled and unknown exposure, e.g., a real compartment
fire where the exposure is not provided to the model as 
an input (applied flux on the walls is not initially known), 
and the exposure is not simple either (neither constant nor 
stepped like in this study). Other considerations include 
correcting the measured temperatures for orientation ef-
fects [21] and, with regards to scaled error metrics, pos-
sibly substituting the naive model with a better and more 
relevant benchmark, such as the 1-D FEA results on a
non-combustible solid with the same geometry, expo-
sure, and initial properties of timber.

Figure 3. Actual vs. predicted temperature profiles for samples heated for a fixed period with a cooling phase
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Figure 4.  Actual vs. predicted temperature profiles for samples heated to failure
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