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ABSTRACT:
The use of cross-laminated timber panels in timber building construction has gained interest in recent years, mainly due

to their minimal carbon emissions, construction speed process, and structural performance. Nevertheless, understanding
the dynamic properties of Cross-Laminated Timber structures remains a challenge, in particular in countries with seismic
hazards. This study aims to determine the dynamic properties of a five-story cross-laminated timber building through
vibration-based monitoring. The study case is made of low structural grade radiata pine CLT panels, combines two
construction systems, and features irregularly distributed openings. Continuous monitoring measurements with operational
modal analysis (OMA) techniques were employed to identify the building’s modal properties under operational conditions.
The results suggest that the predominant frequencies vary over time due to environmental conditions. In particular, there is
a strong correlations ( 0.93) between the moisture content and the natural frequency of the building. Another relevant
finding is that the frequencies of the fundamental modes vary during a seismic event. These findings contribute valuable
data for the development of structural design standards for CLT buildings in seismic regions.
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1 – INTRODUCTION

In recent years, the construction of buildings with cross-
laminated timber (CLT) panels has attracted increasing
interest in countries with high seismicity, thanks to their
environmental advantages [1] and good structural perfor-
mance. CLT material is a composite material capable of
forming robust panels that can be used as walls or as slabs.
CLT panels are composed of sawn timber, the layers of
which are at 90° to each other, giving attributes that confer
a quasi-rigid panel capable of resisting in-plane and out-of-
plane loads [2]. However, due to the possible occurrence
of brittle failures that timber as a material can have under
seismic events, this construction system is usually com-
plemented with steel connectors, which are in charge of
providing ductility to the structural system [3–5].
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Important efforts have been made to understand the be-
havior of construction systems based on cross-laminated
timber, in this sense, tests have been carried out at the level
of connectors [6–10], as well as structural elements such as
walls [11–15], and it has also been possible to study at the
construction system level by performing static and dynamic
tests on prototypes of multi-story buildings (2 to 10 stories)
[16–23], all these studies evidence that cross-laminated
timber performs well against lateral loads, evidencing good
seismic performance of CLT. These international initiatives
have reinforced confidence in the use of cross-laminated
timber as a construction alternative in seismic zones.

While studies of cross-laminated timber have been car-
ried out, attempts have now been made to understand this
structural behavior in real environments, so nondestructive
techniques have been used to assess structural behavior. For
example, the use of structural health monitoring by means
of vibration measurements under operating conditions has
been widely used for these purposes. These types of tech-
niques have been widely used in other building systems
and have been focused on the determination of dynamic
properties over time. From the CLT point of view, studies
have been carried out in Canada [24], Sweden [25], the
United Kingdom [26], Norway [27, 28] and in Chile [29].
These works highlight the need for more knowledge about
the real dynamic response of CLT buildings and underline
the importance of continuous monitoring to understand
the variation of their properties under different levels of
excitation. For example, it has been evidenced that environ-
mental variables influence the dynamic properties of timber
buildings [29–31], on the other hand, it has been shown
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that seismic excitations can transiently vary the frequency
of timber-frame structures [29].
In this context, the present study addresses the long-term

monitoring (1 year) of a 5-story building constructed with
CLT in an area of high seismicity. The aim is to charac-
terize its dynamic properties by means of the Operational
Modal Analysis (OMA) method, as well as to observe the
evolution of these properties in response to environmen-
tal variables and moderate seismic events. With this, the
empirical knowledge necessary for the design of CLT build-
ings in seismic regions is expanded. Finally, these findings
are part of those previously reported by Jara-Cisterna et al.
[29], reinforcing the observed trends and highlighting the
importance of continuous monitoring.

2 – PYMELAB BUILDING

The PymeLab building, located in Concepción, Chile, is
located in a highly seismic zone and is constructed entirely
of low structural quality (C16) radiata pine CLT panels.
This building, is result of a collaborative project with mul-
tiple companies, is currently the tallest CLT building in
Latin America.
With a floor plan of 4.2 m by 6.6 m and a total height

of 14.5 m, the building design considers the alignment of
the openings to generate rigid corners. In addition, two
construction systems were implemented: the first three lev-
els follow the platform system, while the two upper levels
adopt the balloon system. Figure 1 shows a photographic
record of the building and Figure 2 shows section views of
the building.

Figure 1: Photographic record of the 5-story cross-laminated
timber (CLT) prototype

From the structural design point of view, the building
was calculated under the method of allowable stresses ac-
cording to Chilean standards [32, 33], considering a seismic
reduction factor of R = 2 and a drift limit of 0.2%. The
latter criterion proved to be the most restrictive, condition-
ing the structure to a large amount of metallic connectors
to guarantee its stiffness [29, 34]. The architectural layout
and construction details are presented in Figure 3.
As can be seen in Figure 3, there is a large number of

metal connectors. On average, in terms of connectors there
are 2 connectors/m² and 205 fasteners/m² (nails + screws).

Figure 2: Sections from outside of the CLT building: a) North, b)
South, c) West, d) East.

Figure 3: Model of the CLT tower with some construction details.

3 – EXPERIMENTAL SETUP
To record accelerations induced by environmental vi-

brations and seismic events, RaspberryShake R4SD [35]
sensors, with a sampling rate of 100 Hz, were used. The
devices were installed at the northeast corners of the fourth
and fifth levels of the building, as shown in Figure 4. The
continuous measurement campaign runs from August 1,
2023 to August 1, 2024. This type of sensor has been
validated and tested for continuous monitoring of timber
structures [29, 31]. The monitoring scheme, together with
the position of the RaspberryShake sensors, is shown in
Figure 4
Once the signals are measured, post-processing tech-

niques are applied to improve signal quality and reduce
computational cost, such as detrending, decimation and
low-pass filtering.
The data was collected and processed through Python

using the ObsPy library [36]. Once the signals were pro-
cessed, operational modal analysis (OMA) methods were
applied to identify dynamic properties. An OMA technique
widely used in the literature, the stochastic subspace iden-
tification (SSI) method [37], was used.
During the OMA application, a stabilization diagram is

constructed to verify whether the poles are stable. For this
purpose, three stability criteria are defined:

(1)
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Figure 4: Mounting and location of accelerometers for Continu-
ous Monitoring.

(2)

MAC (3)

where is the identified natural frequency, represents
the damping and the modal shape associated to the
order . The function MAC (Modal Assurance Criterion)
evaluates the similarity between modal shapes. If all three
conditions are met simultaneously, the pole is classified
as totally stable (label 4), on the contrary, if the pole is
unstable, it is assigned the label 0. If it is stable in only the
frequency criterion, it is assigned the label 1, if it is stable
in frequency and damping the label 2 and if it is stable in
frequency and modal shapes the label 3.
For the application of the identification methods, the

open-source PyOMA [38] library was used. For the appli-
cation of OMA, 15-minute windows are selected during a
day and the frequencies are determined. Afterwards, a clas-
sification process is applied by means of clusters. Once the
frequencies are identified, the average of the frequencies
identified during a day is calculated.

4 – RESULTS
The results associated with the identification of dynamic

properties over time will be shown below. Typical accelero-
grams obtained during a 15-minute window for environ-
mental vibration measurements are shown in the Figure 5
together with their histograms in the Figure 6.
The results shown in Figs. 5 and 6 show that the quality

of the signals is good enough to apply the OMAmethods,
in particular Figure 6 showing how the signals follow a
normal distribution, unaffected by clipping, or digital noise.
A typical stabilization diagram for a 15-minute window

is shown in the Figure 7.
The results show that in general it is possible to identify

two stable frequencies for different orders, these frequen-
cies are associated to translational modes in the x and y
direction identified in the work of [29]. This process is
performed for a whole day, generating a number of 96 iden-
tifications for one day. The Figure 8 shows the dispersion
of frequencies identified during one day.
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Figure 5: Accelerations recorded in measurement in the 5th story
in the: X (top), Y directions (below).
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Figure 6: Acceleration histograms with probability density and
normal fit.

The results shown in Figure 8 indicate minor variations.
In the worst-case scenario, differences of up to 1.62% are
observed, suggesting that cross-laminated timber remains
relatively stable throughout the day compared to the wood
light-frame construction system [31].
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Figure 7: Stabilization diagram of estimated state space models
for a 15-minute window measurement
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Figure 8: Variation of the natural frequencies of the fundamental
modes and on 1 day

Once the frequencies during a day have been identified,
the average frequencies corresponding to the day are cal-
culated. The natural frequencies of the fundamental modes
are shown in Figure 9.

Figure 9: Variation of the natural frequencies of the fundamental
modes and

The frequencies of the fundamental modes and
vary by 6% and 8%, respectively. These changes in the
frequency is explained by Jara-Cisterna et al. [29] that
are associated with the moisture content of the panels that
can generate swelling and interlocking between the parts
of the structural system, which would increase the lateral
stiffness and the natural frequencies. Figure 10 shows the
comparison between the moisture content of the CLT panels
and the identified frequencies.
Figure 10 indicates that there are higher correlations for

both frequencies, showing the correlation ( ) be-
tween the identified frequencies over time and the moisture
content of the CLT panels.
The results on frequency identification and moisture

content measurement indicate that there is a clear seasonal
trend in the frequencies, with decreases during drier peri-
ods (possible shrinkage of the timber in summer months)
and partial recoveries in winter, although without reaching
the initial value. For example, differences of up to 4% are
found when comparing the initial frequencies and those
at the end of 1 year. This suggests that, as the panels dry,
the timber may undergo changes that prevent it from fully
recovering its original stiffness. To assess what is occur-
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Figure 10: Variation of the natural frequencies of the fundamental
modes f1 (top) and f2 (bottom) and moisture content.

ring, detailed monitoring of the physical and environmental
properties is necessary. In addition, something that may
be causing the frequency not to be the same as the origi-
nal could be caused by microvibrations (such as vibrations
from ambient or minor to large earthquakes) that could
loosen the steel connectors. With that information, changes
in frequency could be correlated with environmental and
structural factors, and more robust design and maintenance
strategies could be defined.
From the point of view of the seismic response, the re-

sults of a 5.4 earthquake in the East-West component
are shown in the Figure 11.
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Figure 11: Seismic Acceleration response in X (top) and Short-
time Fourier Transform (below)

The results shown in the Figure 11 show the seismic
response at the 5th floor, it is found that accelerations of
0.074 g are reached at the 5th floor. To analyze what hap-
pens with the frequency, the spectrogram is shown. The
results indicate that the frequency during the seismic event
is reduced by 15.3 % but has been restored once the energy
has been dissipated, indicating that there is no structural
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damage. During the year of continuous monitoring there
are more than 10 earthquakes over 4.5 in a range of
radius less than 100 km, it is important to note that the
frequency before and after earthquakes remains constant as
shown above. Additionally, another raspberryshake was in-
corporated to measure the excitations at the base level, so it
is expected to deeper further research on this phenomenon.

5 – CONCLUSIONS
Continuous measurements reveal that environmental fac-

tors influence the frequency of the first two vibrationmodes.
Comparing different periods of the year, changes of up to
8% are observed. In addition, it was found that there is
a high level of correlation between the moisture content
of the panels and the frequencies of the first two vibra-
tion modes. Another relevant aspect is that during seismic
events, the structure shows changes around the fundamen-
tal frequencies, highlighting the need for further studies on
this phenomenon. It is important to highlight that more dy-
namic evaluations are required due to seismic excitations.
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