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ABSTRACT: This study extensively monitors a Cross-laminated Timber (CLT) building that stands eight stories tall. 
The monitoring encompasses rooftop acceleration readings coupled with measurements of outside temperature, humidity, 
and wind speed. In addition, the moisture content (MC) of timber in various parts of the building, especially in the middle 
and edge walls, is measured. The extraction of modal parameters is automated and is based on the Stochastic Subspace 
Identification method. The identification of modal parameters is based on the automatic Stochastic Subspace 
Identification. The core aim of this research is to understand how environmental elements, temperature, wood moisture, 
and wind speed influence the building's modal characteristics and its response to vibrations. The findings reveal a marked 
connection between the modal parameters and both temperature and wood moisture levels. Building on this, the 
researchers use a refined Finite Element (FE) model of the structure to explore the interplay between critical physical 
factors, particularly moisture and temperature, and their impact on the identified modes. This analysis has led to an 
empirical formula for predicting the stiffness properties of CLT walls based on wood MC derived from long-term 
monitoring of a timber building. To the authors’ knowledge, it is the first empirical expression relating a mechanical 
property of timber and MC, indirectly estimated from ambient vibration data. 
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1 – INTRODUCTION 

Cross-laminated timber (CLT) is a relatively new 
engineered wood product. It received its first European 
technical approval (ETA) in 2006 [1]. The environmental 
advantages of CLT have contributed to its increasing 
popularity [2]. These characteristics have made CLT an 
appealing choice for sustainable construction [3]. 

Nonetheless, like other engineered wood products, it 
exhibits significant sensitivity to environmental factors 
such as temperature and humidity. Additionally, they are 
highly prone to vibration issues due to the low stiffness-to-
mass ratio [4–6]. Over the past thirty years, considerable 
efforts have been made in long-term monitoring in various 
construction fields. However, timber has been somewhat 
overlooked, mainly due to the limited availability of case 
studies to install permanent monitoring systems. As 
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continuous dynamic monitoring is more systematically 
applied and CLT has become a leading construction 
material, the field can be considered mature for exploration. 

For timber structures, dynamic data acquisition has been 
mainly used to obtain an instantaneous understanding of a 
building’s behavior, such as its mode shapes, natural 
frequency, or response to external excitations like wind and 
earthquakes [7–11]. More recently, research trends have 
also shown numerous instances of model updating, 
employing approaches ranging from deterministic [12,13] 
to Bayesian [14]. 

The examples of long-term dynamic monitoring of timber 
buildings are minimal. Leyder et al. monitored the House 
of Natural Resources in Switzerland [15] with a post-
tensioned timber frame and concrete-timber composite 
slabs. More recently, Larsson et al. [16] made a significant 
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contribution in this field, with the long-term monitoring of 
a hybrid timber building, focusing on the dependence of 
modal parameters on temperature and moisture content.  

However, to the authors’ knowledge, what remains 
unexplored is establishing a relationship between the 
building’s modeling parameters and environmental factors, 
primarily MC and temperature. Additionally, the study 
focuses on a hybrid, not fully timber structure. Thus, the 
observed effects cannot be entirely attributed to timber but 
also its interaction with other construction materials. 

Establishing the effect of environmental parameters on the 
physical properties of wood requires two main 
contributions: a long-term monitoring system and a finely-
tuned finite element (FE) model of the building. This paper 
provides both elements. After a detailed analysis of the 
long-term monitoring data, the FE model is used to derive 
functional relations between the physical parameters and 
the environmental factors.  

This paper presents the long-term continuous dynamic 
monitoring of an eight-story building that is entirely CLT. 
This is the first example in the scientific literature where a 
pure CLT building is monitored and used to assess 
empirical relationships between the physical properties of 
wood and its MC and temperature. 

2 – CASE STUDY 

The studies building is an eight-story student housing 
structure located in Ås, Norway [12]. The building’s 
overall height is 27 m, excluding a reinforced concrete 
basement. It features a 23 by 15 m rectangular layout.  

The structure is made of CLT panels, including bearing 
walls and the elevator core. An exterior view of the is 
presented in Figures 1a and 1b. The structure has large 
monolithic walls with high length-to-height ratios, 
assembled using various fasteners such as tie-downs, angle 
brackets, and screws. Beneath the interior walls, a 10 mm 
soundproofing layer is installed, which is absent in the 
external wall-floor joints. The exterior wall is clad with 20 
mm thick wooden boards. Indoor walls are generally 
covered with 25 mm plasterboard, while some are left bare. 
The floors are layered with an Oriented Stand Board 
(OSB), a substitute for concrete screed. Most CLT panels 
have a  5-layer layup from Mayr-Melnhof, except for 90 
mm 3-layer panels in a few cases. Wall thickness varies 
from 100 to 180 mm, and floor slabs from 180 to 220 mm. 

In October 2022, the authors installed a permanent 
monitoring system on the structure's rooftop, as in Figure 
1(c). The system consists of three piezoelectric 
accelerometers and a weather station launched with an 
anemometer and temperature and humidity sensors, which 
are summarized in Table 1. 

Table 1: Main characteristics of the sensors installed. 

Num Measure Sensor Output 
range Sensitivity 

1 Wind speed Gill WindMaster 
ultrasonic 

anemometer 

0-30 m/s 0.16 V/m/s 

2 Wind 
direction 0-360° 0.16 V/° 

3 External 
temperature Vaisala 

transmitter 
HMT333 

-40/80°C 0.0625V/°C 

4 External 
humidity 

0-100
RH 0.05 V/RH 

5 Vibration 
Accelerometer 
(PCB 393B12) 

0-1g 10.48 V/g 

6 Vibration 0-1g 10.13 V/g 

7 Vibration 0-1g 10.13 V/g 

Figure 1. Illustration on the a) single fastener test, b) Case A CPG test, c) Case B CPG test, and d) assembly process of glued-in wooden rods: from 

drilling, mixing adhesives, pouring adhesive in predrilled holes to inserting rods and curing adhesives.
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An independent monitoring system by Omnisense has been 
implemented within the structure to track the moisture 
levels in CLT. The research team positioned eleven sensors 
on internal and external walls across the building’s interior. 
These sensors are catalogued in Table 2, which details their 
locations. 

Table 2: List of the MC sensors installed in the building and their 

location. 

Num Building position Direction CLT Wall position 
1 Kitchen West Internal 
2 Room No. 801 East Perimeter 
3 Room No. 801 South Perimeter 
4 Room No. 809 West Perimeter 
5 Room No. 816 North Perimeter 
6 Staircase No.6 North Internal 
7 Staircase No.6 South Internal 
8 Staircase No.7 North Internal 
9 Staircase No.7 South Internal 
10 Staircase No.8 North Internal 
11 Staircase No.8 South Internal 

Figure 2 presents a typical wireless sensor installed for MC 
monitoring. In some cases, the installation required plaster 
removal, as in Figure 2b. 

2.1 MODAL TRACKING 

Several methods have emerged to automate operational 
modal analysis (OMA) within structural health monitoring 
(SHM) applications. It should be noted that the most 
suitable method for automated OMA greatly depends on 
the quality of the data and the specific case study analyzed. 
It is possible that high-quality data and a case study 
characterized by stable, well-spaced, and distinct modes 
and spectral characteristics of the excitation noise that is 
almost white in the frequency range of interest may render 
various approaches virtually equivalent. 

In this specific study, the authors opted for a semi-
automatic approach, given the excellent quality of the data 
and the stabilization diagrams obtained for various input 
parameters of the SSI-cov. This approach is characterized 
by a reduced number of input parameters: the time shift, the 

minimum and maximum system orders, and the reference 
frequencies that define the frequency band within which to 
track the mode. The uncertainty of the modal parameters 
was estimated using the algorithm proposed by Döhler [68]. 
Nonetheless, this uncertainty was of an order of magnitude 
lower than the fourth decimal place and thus considered 
negligible and not discussed in the current work. 

In this application, the authors monitored the evolution of 
three modes with reference frequencies of 1.88, 2.42, and 
2.7 Hz (presented in Figure 4), with tolerances of 0.2 Hz 
each. Regarding the choice of input parameters, it is worth 
noting that the SSI-cov algorithm is governed by the 
following control parameters: 

the number of block rows i (also known as the
time shift).
the length of the data time windows j.
the model order n.

The efficiency and accuracy of the SSI-cov algorithm 
depend on the proper selection of i, j, and n. It is noted that 
these control parameters are not independent of each other. 
Particularly, a system of order n can be identified as long 
as the following condition is fulfilled: ݅ × ݆ ≥ ݊
Consequently, the minimum order, nmin, can be assumed 
as a rule of thumb to be twice the number of monitored 
degrees of freedom l, which equals 3 in the current case 
study [17]. ݊௠௜௡ = 2 × ݈ = 2 × 3 = 6
Theoretically, it is required that j → ∞. Therefore, the 
authors did not window the signal and used its entire 
length (approximately one hour sampled at 200 Hz). The 
time shift i is still considered a user-defined parameter. 
Given the importance of this control parameter, after 
manual tuning, the authors kept it as low as possible to 
avoid splitting phenomena that occur for too high values 
of i. Therefore, i was assumed equal to: 

݅ = ඄ ௙ೞଶ௠௔௫൛௙೑,ଵൟඈ ≈ 50
where ⌈·⌉ is the ceiling operation to the nearest integer, fs 
the sampling frequency equal to 200 Hz, and ff the 
fundamental frequency, assumed equal to 1.8 Hz. The 
maximum model order nmax comes from Equation 1, 
assumed equal to i × l. The following soft validation 
criteria (SC), between consecutive orders, are considered 
[18–20]: 
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∆݂ = ௙ೌ ି௙್௙ೌ ≤ 0.01
ߦ∆ = కೌିక್కೌ ≤ 0.051 ௔߰)ܥܣܯ− ,߰௕) ≤ 0.02

Furthermore, the following hard validation criteria (HC), 
in absolute terms, are considered: ߦ ≤ ܥܲܯ0.1 ≥ ܦܲܯ0.7 ≤ 0.3
Here the subscripts a, b represent two whichever poles in 
the stabilization diagram, and MAC is the modal assurance 
criterion (which represents the measure of the correlation 
between two modal vectors [18]). Particularly, Eqs. (4)-(6) 
are denoted as soft criteria (SC) in terms of frequency, 
damping, and mode shape, respectively, whereas Eqs. (7)-
(9) are designated as a hard criterion (HC) on the
maximum allowed damping, the minimum allowed value
for modal phase collinearity (MPC), and the maximum
allowed value for modal phase deviation (MPD) [19,20].

A schematic representation of the procedure is shown as 
the pseudo-code presented below. This semi-automatic 
approach allows users to specify the time shift, the model 
order range, and reference frequencies but then automates 
evaluating and refining the model within those parameters. 

3 – RESULTS 

3.1 MODAL PARAMETERS AND VIBRATION 
RESPONSE 

Three modes can be intuitively identified in a typical 
stabilization diagram, as in Figure 4.  

The acquisition began in November 2022 and has 
continued until May 2024. However, there was an 
interruption in the acquisition from the end of January 2023 
to July 2023 due to cable disconnections. The evolution of 
the peak acceleration as a function of the acquisition time 
is presented in Figure 5. 

The mean, standard deviation, maximum, and minimum 
values of the peak and root-mean-square acceleration for 
the three installed accelerometers are presented in Table 3. 

Table 3: Mean, standard deviation, maximum, and minimum values of 

the peak and root-mean-square acceleration for the three 

accelerometers installed. 

Parameters Num Mean Std. 
Dev. Max Min 

Peak acceleration 
[mm/s2] 

1 20.35 16.32 198.68 6.95 
2 9.21 11.62 85.53 1.03 
3 10.14 13.74 105.30 1.22 

RMS 
acceleration 
[mm/s2] 

1 1.61 1.40 15.40 0.75 
2 1.22 2.01 20.22 0.18 
3 2.00 4.36 40.57 0.19 

Figure 4. a) Typical stabilization chart from the SSI-cov algorithm, and b) three mode shapes.
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The average peak acceleration ranges between 10 and 20 
mm/s2. However, in some cases, the excitation can reach 
almost 200 mm/s2. Similarly, the root-mean-square 
acceleration ranges between 1.5 and 2 mm/s2, with maxima 
higher than 40 mm/s2 in some cases. The response level is 
not correlated to the wind speed and can be attributed 
mainly to the human-induced excitation of the occupants. 

The variation of the (a) natural frequencies and (b) viscous 
damping ratios of the first three modes as a function of the 
acquisition date is presented in Figure 6.  

Table 4 presents the mean and standard deviation of the 
natural frequency and damping ratios of the first three 
modes. 

Table 4: Mean and standard deviation (Std. Dev.) of the natural 

frequency and damping ratios of the first three modes. 

Parameters 
First mode Second 

mode Third mode 

Mean Std. 
Dev. Mean Std. 

Dev. Mean Std. 
Dev. 

Natural 
Frequency 1.874 0.022 2.399 0.027 2.688 0.032 

Damping 
ratio 0.015 0.002 0.017 0.003 0.021 0.007 

3.2 ENVIRONMENTAL PARAMETERS 

The evolution of 1) the external temperature, 2) relative 
humidity, 3) wind speed, 4) wind direction as a function of 
the acquisition date are presented in Figures 7c and 7d. 
Besides, the daily and nightly variations in the MC of CLT 
walls in different locations are presented in Figures 7e-7h.

Figure 7.Variation of the (a) external temperature, (b) relative humidity, c) wind speed, and (d) direction as a function of the acquisition date; e-h) 

Daily and nightly variations in the MC of the perimetral CLT walls. Two data points for each day - one for daytime and one for nighttime.
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Figure 8. Correlation between natural frequency vs the average MC of the perimeter walls (Room No. 801, 808, 809, and 816).

The MC of the internal walls, with a few exceptions, never 
exceeds 7%. In contrast, the perimeter walls exhibit 
evident fluctuations in MC, typically higher than 7%, 
except for specific measurements taken during fall and 
winter. Generally, the MC is lower during fall and winter 
and increases during spring and summer. 

The MC of wood tends to be higher during the summer for 
several reasons. During summer, the increased 
temperature raises the capacity of the air to retain moisture, 
which can be absorbed by wood. Furthermore, in winter, 
indoor heating systems tend to dry out the air inside 
buildings, thus reducing the MC of wood indoors. In 
contrast, during summer, the lack of heating and the 
potential for increased ventilation with outdoor air can 
lead to higher indoor humidity levels. Additionally, the 
higher dew points in summer might lead to higher 
condensation on cooler surfaces of CLT. 

3.3 CORRELATION BETWEEN NATURAL 
FREQUENCIES AND ENVIRONMENTAL 
MEASUREMENTS 

The measured environmental parameters and the natural 
frequency are presented. As a result, the weather station 
measurements do not correlate with the modal parameters, 
except for the external temperature and the MC of the 
external walls. Due to page limitations, only those 
parameters depicting correlations are presented here. 

The natural frequency data of the first three modes are 
correlated with the average MC of the perimeter walls 
(Room No. 801, 808, 809, and 816), and the results are 
presented in Figure 8.  

As a result of observation, the natural frequencies exhibit a 
positive correlation with MC in the first and second modes, 
while no significant correlation is observed in the third 
mode. Interestingly, the data are grouped into three distinct 
and well-separated clusters for all three modes. This 
clustering may indicate a shift or discontinuity in the 
building’s dynamics.  

To gain further insight into this phenomenon, Fig. 9a shows 
the relationship between the fundamental frequency and 
external temperature. In contrast, Fig. 9b depicts the 
fundamental frequency against the average MC of the 
perimeter walls. In Fig. 9a, a color gradient from blue to 
red represents varying MC values, and in Fig. 9b, the color 
coding is based on temperature values.  

While the fundamental frequency exhibits a smooth 
increase with temperature, its correlation with MC is 
characterized by distinct clusters. Specifically, the upper-
right cluster predominantly includes data from the summer 
and parts of the fall and spring. In contrast, the bottom-left 
cluster comprises primarily winter and some fall data. 
Additionally, a smaller lateral cluster in the central-left part, 
consisting solely of winter data, corresponds to particularly 
low MC values. 

Figure 9. Correlation between natural frequency and (a) the external temperature and (b) average MC.
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Besides, the authors observed that the frequencies are not 
correlated with the fundamental frequency at low 
temperatures, as shown in Fig. 9b. Consequently, it was 
explored whether snow depth could be an explanatory 
parameter using data from a meteorological station in Ås, 
just a few kilometers away from the studied housing. 

The fundamental frequency is plotted against the snow 
depth in Figure 10, and it is evident that the fundamental 
frequency decreases almost linearly as the snow depth 
increases due to the added mass on the building’s roof. 

3.4 EMPIRICAL REGRESSION MODEL FOR 
FUNDAMENTAL FREQUENCY PREDICTION 

The authors developed two empirical predictive models, 
given the strong correlations between the fundamental 
frequency, temperature, MC, and snow height. The first 
model uses the temperature and MC as input, and the 
second also includes the snow height. The methods used 
are linear interaction and machine learning (ML) models. 
Among the ML approaches evaluated, including regression 
trees, support vector machine (SVM), and artificial neural 
network, the SVM with a Gaussian kernel exhibited the 
best results and was subsequently chosen. 

The mathematical formulation of the first linear interaction 
model is detailed below:

ଵ݂ = ଴ߚ + ଵߚ ∙ ܥܯ + ଶߚ ∙ ܶ + ଵଶߚ ∙ ܥܯ ∙ ܶ + ߝ
The second model, including the effect of snow, can be 
written as:

ଵ݂ = ଴ߚ + ଵߚ ∙ ℎ௦௡௢௪ + ଶߚ ∙ ܶ + ଷߚ ∙ ܥܯ + ଵଶߚ ∙ ℎ௦௡௢௪ ∙ܶ + ଵଷߚ ∙ ܥܯ ∙ ܶ + ߝ
The calibration of the models was conducted using the 
hold-out method. Data was split into a training set (80%) 
and a validation set (20%), randomly selected throughout 
the whole monitoring period. 

Table 5 presents the statistical estimates of the linear model 
parameters obtained using the maximum 

Table 5: Statistical estimates of the linear model parameters of the two 

models. The table lists the parameter estimates along 

with their standard errors (SE), t-statistics (tStat), and p-values 

(pValue) for each term in the model. 

Parameter Estimate SE tStat pValue 
β0 1.673 0.028 58.740 0 
β01 0.025 0.004 6.522 0.000 
β02 -0.019 0.002 -8.400 0.000 
β12 0.003 0.000 8.553 0.000 
β0 1.834 0.021 86.171 0.000 
β1 -0.001 0.000 -15.758 0.000 
β2 0.005 0.003 1.661 0.097 
β3 -0.035 0.002 -19.062 0.000 
β12 0.000 0.000 5.850 0.000 
β13 0.004 0.000 18.996 0.000 

The authors also calibrated an SVM regression using a 
Gaussian kernel [21]. In an SVM regression, the objective 
is to find a function f (x) that approximates the relationship 
between the input features x and the response y. This 
function is based on a set of training data {(x1, y1), (x2, 
y2), . . . , (xn, yn)}, where xi represents the feature vector of 
the i-th instance and yi is its corresponding response. The 
SVM regression function f (x) is given by: ݂(ݔ) = ∑ ௜ߙ) − ,ݔ)ܭ(∗௜ߙ ௜)௡௜ୀଵݔ + ܾ
where ߙ௜ and ߙ௜∗ are the Lagrange multipliers; K(ݔ,  ௜) isݔ
the Gaussian (RBF) kernel function, and b is the bias term/ 
The Gaussian kernel ݔ)ܭ,  :௜) is defined asݔ

,ݔ)ܭ (௜ݔ = exp (− ‖௫ି௫೔‖మଶఙమ )
Here, ߪ is the kernel scale parameter, which is set through 
the ‘KernelScale’ parameter in the Matlab code. The 
parameter ߙ௜, ߙ௜∗, and b are determined during the training 
process, where the model is trained to interpret the data 
according to the SVM regression criterion. Table 6 
presents the SVM parameters. 

Figure 10. Natural frequency vs (a) external temperature and (b) average MC.

567 https://doi.org/10.52202/080513-0070



Table 6: SVM Model Parameters. 

Parameter Symbol Value 
Kernel scale 0.350 ߪ 
Mean box constraint C 0.018 
Epsilon 0.0018 ߝ 
Bias b 1.807 

Table 7 compares the performance of the linear and SVM 
models. The linear interaction model using only 
temperature and MC as regressors, being the simplest of 
the two, shows lower performance with an R2 value close 
to 0.5, with no indications of overfitting. In contrast, the 
corresponding SVM model exhibits slightly superior 
performance, with an R2 value of 0.5 for the validation set 
and 0.75 for the training set. It appears that the data quality 
does not support regressions with an R2 higher than 0.65 
without risking overfitting, a conclusion also reached 
when employing alternative ML models. 

Table 7: Error Metrics for Interaction Linear Model and SVM. The 

abbreviations are: MAE (Maximum Absolute Error), MSE (Mean 

Squared Error), RMSE (Root Mean Squared Error), Std. Dev. (Standard 

Deviation of Error), VAF (Variance Accounted For), and R2. 

Model No.1 - Input: Temperature and MC 

Method Set MAE MSE RMSE Std. 
Dev. VAF R2 

Interaction 
linear 

Training 0.056 0.0002 0.016 0.016 0.50 0.50 
Validation 0.037 0.0002 0.014 0.014 0.45 0.45 

SVM Training 0.066 0.0001 0.011 0.011 0.75 0.75 
Validation 0.061 0.0002 0.015 0.014 0.53 0.50 

Model No.2 - Input: Temperature, MC and snow height 

Method Set MAE MSE RMSE Std. 
Dev. VAF R2 

Interaction 
linear 

Training 0.047 0.0001 0.011 0.011 0.74 0.74 
Validation 0.049 0.0002 0.013 0.013 0.72 0.72 

SVM Training 0.047 0.0000 0.007 0.007 0.90 0.90 
Validation 0.045 0.0001 0.010 0.010 0.78 0.78 

Fig. 11(a)-(b) compares the first empirical model by 
plotting the measured fundamental frequencies versus the 
predictions. The SVM model outperforms the linear model, 
which struggles to fit data at lower natural frequencies. 
Conversely, the SVM model demonstrates a variance that 
is almost consistent with the frequency’s varying 
amplitude. 

It can also be observed that including snow depth 
significantly enhances the performance metrics, with R2 
increasing to about 0.7 for the linear model and, on 
average, 0.8 for the SVM model. This is also evident in 
Fig. 11(c)-(d). In conclusion, the parameters to consider in 
model updating include the stiffness properties of CLT, 
which are affected by MC, temperature, and snow height. 

3.4 FEM MODEL OF THE BUILDING AND 
PHYSICAL PARAMETER CORRELATION 

In previous research by the authors [14], an FE model for 
predicting the modal properties of the building was 
developed in Ansy, which adopted layered shell elements 
for modeling CLT panels following the detailed geometry 
of the building, assuming rigid connections between the 
panels and elastic support for the foundation.  

Monitoring of the building showed a seasonal variation of 
its modal properties. Since the identified values of the 
updating parameters depend on the measured natural 
frequencies, different results may be obtained if the AVT 
was performed at a different time of the year. To explore 
this effect, model updating was repeated for each set of 
identified modal properties of the monitoring.  

In this automated model updating, only one parameter was 
selected - the in-plane shear modulus of the CLT walls, 
which is based on two reasons. First, with the monitoring, 
the number of updating parameters needed to be reduced 
to achieve stable identification. Second, most variation of 
natural frequencies was assumed to originate from the MC 
and the additional snow load (can be estimated). MC then 
remains the most influential variable in monitoring, which 
is expected to influence the modal properties by changing 
the in-plane shear stiffness of the CLT panels [16]. 
Therefore, by using the in-plane shear stiffness as the 
updating parameter, its seasonal variation as a function of 
MC can be observed. However, it is worth noting that 
updating an intricate system may include the effects of 
more than one parameter. 

Figure 11. Comparison of empirical models (a),(b) using temperature and MC as regressors, and (c),(d) also including the snow height. (a),(c) show 

the performance of the linear interaction model, and (b),(d) that of the SVM model. Both models are evaluated in terms of their predicted vs. 

measured fundamental frequencies.
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MC then remains the most influential variable in 
monitoring, which is expected to influence the modal 
properties by changing the in-plane shear stiffness of the 
CLT panels [16]. Therefore, by using the in-plane shear 
stiffness as the updating parameter, its seasonal variation 
as a function of MC can be observed. However, the 
interpretation of the results needs to be taken with caution. 
Namely, updating an intricate system may include the 
effects of more than one parameter. 

The mathematical formulation of Bayesian inference is 
not presented in detail due to page limitations. The 
updated value of the parameter G as a function of the 
acquisition time is shown in Fig. 12(a), while in Fig. 
12(b), G is plotted against the MC with color coding 
based on the external temperature value. It should be 
noted that even though parameter G was implemented as 
an in-plane shear modulus of CLT walls, its updated 
value does not represent solely a material property. In 
addition, the updated value also includes the effects of 
modeling errors that are present due to the inherent nature 
of the numerical models. 

First, it is noted that the parameter G exhibits a clear 
decrease over time and considerable variability across the 
measurement period. Indeed, as observed, the reduction 
in G is almost invariably linked to a gradual decline in 
the MC. The G parameter positively correlates with MC 
and temperature, as illustrated in Fig. 12(b). The external 
temperature is indirectly linked to the MC since the 
decrease in MC during colder months is primarily due to 
heating systems, which are introduced into the building 
air with a low water content from outside. Indeed, it is 
observed that the MC is the independent regressor, as low 
G values occur not only at low temperatures and low MC 
but also, as shown in Fig. 12(b) in the lower left, at low 

MC and higher temperatures. Therefore, the authors 
opted for correlating the parameter G solely to MC since 
it is directly and inherently connected to the mechanics 
of the panel [22,23]. The obtained deterministic linear 
correlation, excluding points with MC below 7.5%, is: ܩ = 441 + 44.62 × (MC − (%)ܥܯ ݁ݎℎ݁ݓ,(7.5 ∈ [7.5,8.8]
The R2 = 0.63 indicates a satisfactory correlation despite 
the large uncertainty that is related to the structural 
identification, as well as the assumption that MC changes 
homogeneously over all the CLT panels of the building. 

4 – CONCLUSIONS 

This paper presents the results of a long-term monitoring 
project of an eight-story CLT building in Ås, Norway. 
The long-term monitoring involved measuring the 
building’s vibration response, external environmental 
parameters (wind direction and speed, external 
temperature, and external relative humidity), and MC of 
the selected perimeter and internal CLT walls. The 
vibration data collected twice daily were processed using 
the Stochastic Subspace Identification (SSI-cov) method 
to track the building’s modal parameters. 

The analysis indicates that the external RH and wind 
speed did not significantly impact the structure’s modal 
parameters. The relative humidity demonstrates high 
variability, which precludes a consistent trend in modal 
parameters, possibly due to a delayed response time. A 
positive correlation was found between the MC and the 
fundamental frequency. This relationship, with an R2 
value of approximately 0.4, might be counterintuitive. In 
colder countries like Norway, heating systems are 
operational most of the year, leading to a progressive 
drying of the wood, which peaks at the end of winter. 
This study suggests that increased temperatures and MC 
contribute to a stiffer structure, owing to thermal 
expansion and enhanced friction in timber connections. 

Additionally, a strong negative correlation was observed 
between the fundamental frequency and snow height, 
which emerged as the second main parameter for 
explaining the variability in the modal data. The analysis 
of experimental data indicates that temperature, MC, and 
snow height significantly influence modal parameters. 
The first two factors are tied to the mechanical properties 
of CLT, while the third is external. 

Besides, the authors have implemented a continuous 
Bayesian FE model updating strategy, focusing on 
updating the in-plane shear modulus of the CLT walls. A 
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relationship between the shear modulus and MC based on 
the vibration data has been achieved, achieving an R2 
value of 0.63. In contrast to the existing literature, which 
focuses on the empirical relationships between modal 
and environmental parameters, this effort marks the first 
attempt to derive an empirical relationship for the 
mechanical properties of CLT from long-term vibration-
based monitoring. 
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