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ABSTRACT: The use of cross laminated timber (CLT) in combination with glulam ribs has become increasingly popular 
in timber construction. Especially in cases with relatively large spans or higher loads, this solution is even necessary to 
compete with other building materials. To simplify the process in platform frame type constructions, the ribs may be cut-
back so the wall-floor-wall interface is still easily manageable on site. The described cut-back is causing additional 
stresses in the CLT-element wich can quickly become of high relevance. To bring this potentially critical situation to the 
attention of the designing engineer and to evaluate the magnitude of these stresses (mainly rolling-shear), using a 
simplified engineering model, are the aims of this paper.
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1 – INTRODUCTION

The use of cross laminated timber (CLT) in construction 
has become very popular as a pure panel element for 
walls, ceilings or roofs. For ceiling elements with larger 
spans (over 7 m) or uses with higher live loads (office or 
school buildings), or a combination of both, a solid CLT 
panel is usually not sufficient to fulfil the serviceability 
requirements. In these cases, rib elements consisting of a 
CLT panel and glulam ribs are a suitable alternative.

The geometry of these rib elements is irregular in cross-
section, therefore the glulam ribs may be cut-back in the 
support area (ribs do not extend all the way over the 
support), to simplify the construction process in platform 

framing. In addition to the transverse tensile stresses in the 
joint between rib and CLT slab, as discussed in [1] and 
[2], this offset creates additional bending stresses in the 
area of the support due to the eccentric load introduction. 
In this configuration, the shear verification in the CLT 
panel will become the governing ULS-design situation 
(usually, shear is of minor importance in CLT slab 
verification) depending on the spacing of the ribs.

These normal and shear stresses can only be estimated 
roughly with existing engineering models and their 
magnitude is difficult to calculate without the use of finite 
element methods. This paper will present a method to 
address this local problem and provides a comparison of 
different model approaches.

Figure 1. Support options for ribbed CLT slabs – without cut-backs (left), with cut-backs (right)
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2 – MECHANICS / BASICS

2.1 INTRODUCTION

The areas to be verified are in the support area ahead of 
the rib, which may be up to approximately 200 mm long. 
From the mechanical perspective, CLT acts as a simple 
plate without reinforcement from the rib in this region. A 
pure orthotropic plate is used as a simplified analytical 
model, in which the entire shear force at the end of the rib 
is transferred concentratedly to the CLT plate via the 
reinforcing screws [1]. In the edge area investigated, the 
plate acts for its own and it can be assumed that the errors 
made (in the central area without rib) quickly decrease and 
do not cause any major disturbances close to the support 
(St. Venant's principle).

A simply supported rectangular plate is to be solved 
analytically. Symmetry conditions can be assumed for the 
other edges of the outer strips (see Fig. 2) due to the 
usually regular sequence of ribs. As model assumption, in 
the centre of this plate near the end of the ribs, the entire 
shear force is transferred from rib to plate within a 
rectangular area (borderlines of the screw-group).

The following coordinate system will be used: The x-
direction is parallel to the span direction of the ribbed 
CLT-panel, the y-direction is perpendicular to the span
and the z-direction vertically oriented (see Fig. 5). 

Loads must be transferred from the ribbed CLT panel into 
the CLT slab in the vicinity of the two support lines. It is 
assumed that this load transfer should occur with a 
concentrated load at a distance e from the support line, see 
Fig. 2 and Fig. 4. This load is usually transferred by 
several vertical screws at the end of the rib (see right part 
of Fig. 4). For simplicity, it is assumed that the total 

internal shear force acting at a distance e from the support 
must be transferred. This simplification is somewhat in 
contradiction to [2], but for the purpose of this paper this 
simplification can be justified.

The solution strategy uses Fourier series for the load and 
functions in the x-direction (i.e. span of the ribbed CLT 
panel), whereas a differential equation has to be solved in 
the y-direction (perpendicular to the span).

In the y-direction, two different strips must be 
distinguished for the CLT panel (Fig. 2):

- an inner strip covering the CLT area directly
adjacent to the bottom rib
- an outer strip located in a free zone between 2 ribs
ending in the middle between the ribs

2.2 ACTING LOAD AND DEVELOPMENT OF
FOURIER SERIES

As already stated in 2.1, a concentrated load has to be 
introduced at distance e in the CLT slab, which transfers 
the entire load from the ribbed CLT panel into the CLT 
plate alone near the support line. The vertical force should 
be determined with the shear force of the ribbed CLT 
panel at the regarded position, see (1). ( ) = ( 2 ) 

To obtain a Fourier transform in the x-direction (span of 
the ribbed CLT panel), it is assumed that a uniformly 
distributed load is acting on the CLT panel over a length 
of 2·c and a width of 2·b1 (see Fig. 2). A local uniformly 
distributed load is expected to perform better than a 
concentrated load.

Figure 2. Definition of geometry and symbols used
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The vertical force given by (1) must be converted into a 
distributed load q* acting on the two highlighted areas at 
the centre of the reinforcement screws (see Fig. 2). This 
distributed load q* is given by (2). 

 = ( ) = ( )
 

The Fourier series for the load q*, given in Fig. 2, can be 
evaluated using (3) for odd values of k. ( ) =  

If k is odd, the Fourier term bk is evaluated using (4). If k 
is even, bk is zero. 

= 8 *
 

with 
L …. span length 
b …. rib spacing 
e, c … distances, see Fig. 2 
qd …. design value of external load per unit area 
q* …. uniformly distributed load, see (2) 
k …. kth term of Fourier series 

2.3 BASIC MECHANICAL EQUATIONS 

The 4th order differential partial equation for plate bending 
according to the shear-stiff Kirchhoff's plate theory is 
given in (5). 

+ + = ( , ) 

with 
qz(x,y) arbitrary distributed loads qz(x,y) acting in 

transverse direction 
w(x,y) transverse deflection of plate due to loading 

qz(x,y) 
Bx bending stiffness in x-direction 
By bending stiffness in y-direction 
B  coupled bending stiffness which is generally 

neglected for CLT 
Bxy twisting stiffness of CLT plate 

2.4 MULTIPLICATIVE APPROACH 

As the solution of a partial differential equation is not 
simple, the following multiplicative approach is adopted 
(6). In the x-direction (span of the ribbed CLT panel), a 
classical Fourier approximation is used, whereas in the y-
direction a simpler new function ¯ ( ), which depends 
only on y, is used. ( , ) = ¯ ( )  

with 
L span length 
k kth term of Fourier series 

Finally, a summation over all k terms for k = 1, 2 ... to INF 
(theoretically) has to be performed. In the practical 
calculations used in this paper, the summation in the 
developed Python program always ends at k = 500. 

2.5 LEADING ORDINARY DIFFERENTIAL 
EQUATIONS 

Based on the equations of 2.3, using the approach of 2.4 
and some mathematical transformations, the following 
ordinary differential equation can be derived for the y-
coordinate only (following (6)). Instead of solving a 
differential equation of 4th order (5), four differential 
equations of 1st order can be derived (7-10). Four new 
functions have to be defined. These functions are  ¯ ( ),  ¯ ( ), ¯ ( ) and ¯ ( )  which have to be multiplied by 
the sine or cosine term according to eq. 6 to obtain the 
complete solution. 

The governing 4 equations (derivates d/dy) are the 
following: 

 kinematic differential equation¯ ( ) = ¯ ( ) 

 constitutive differential equation¯ ( ) = ¯ ( )


 transverse equilibrium with external loads¯ ( ) = ¯ ( )
+2 ¯ ( ) 

 rotational equilibrium for shear section¯ ( ) =
¯ ( ) 2 ¯ ( ) 
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2.6 SOLUTION 

Homogeneous solution 

The homogeneous solution is obtained by transforming 
(7) to (10) into a set of linear differential equations with
constant parameters. By introducing the exponential
approach for all 4 unknown functions, the homogeneous
solution is a combination of eigenvectors multiplied by
the exponential function of eigenvalues times y-
coordinate. 4 different eigenvalues and eigenvectors can
be calculated from the system.

Particular solution 

The following approach can provide a particular solution: 

¯ ( ) =  

with bk evaluated using (4). The other 3 inhomogeneous 
solutions remain zero, as shown below (12): 

,¯ ( ) = ,¯ ( ) = ,¯ ( ) = 0 

2.7 TRANSISTION CONDITIONS 

Transition conditions must be formulated between the 
inner and outer CLT strips (see Fig. 2). The inner CLT 
strip receives the vertical load q* according to (2), while 
the outer CLT strip has to work in conjunction with the 
central zone. 4 integration constants have to be solved for 
the inner strip (index i) and another 4 integration constants 
for the outer strip (index o). 

For all 4 main unknown functions, the transition 
conditions at y = b1 require smooth transitions: 

 transition for displacement¯ ( ) = ¯ ( ) 

 transition for rotation about the x-axis

,¯ ( ) = ,¯ ( ) 

 transition for shear force

,¯ ( ) = ,¯ ( ) 

 transition for moment

,¯ ( ) = ,¯ ( ) 

These four transition conditions lead to 4 linear algebraic 
equations with 8 integration constants as unknowns. 

2.8 BOUNDARY CONDITIONS 

Boundary conditions must be formulated in the centre of 
the inner and at the end of the outer CLT strip (see Fig. 2). 
A symmetry condition can be formulated in the centre of 
the inner strip. For the outer strip, 2 different situations 
can be considered: One is a single ribbed CLT panel 
without any interaction with adjacent members (case 1). 
Alternatively, several beams can be attached to a CLT 
panel (case 2, typical case). For simplicity, it is assumed 
that the number of units of such ribbed CLT panels is 
infinite, which allows the assumption of a symmetry 
condition between each ribbed CLT panel. 

Boundary condition at y = 0 (rib axis, line of symmetry): 

,¯ (0) = ,¯ (0) = 0 

Boundary condition at y = ±b/2 (case 1, free edge): 

,¯ ( ) = ,¯ ( ) 

Alternative boundary condition at y = ±b/2 (case 2, line 
of symmetry): 

,¯ ± = ,¯ ± = 0 

Now the 8 equations for 8 integration constants as 
unknowns are available. 

2.9 NUMERICAL IMPLEMENTATION 

Although the given solution can be considered analytical 
and therefore exact, the use of infinite series requires a 
lot of number crunching. This work is best done using a 
software tool. We chose Python as the preferred 
programming language because it requires little 
development time. 

As mentioned in 2.6, eigenvalues and eigenvectors have 
to be found, and according to 2.7 and 2.8, a set of linear 
equations has to be solved. All of this mathematical work 
is done using software packages written entirely in 
Python. 

Exact numerical results can be computed at any position 
on the basis of this solution. For the purpose of this paper, 
only results along the symmetry axis are shown. 

3 – THE PROJECT-EXAMPLE 

In this section a model-project will be presented and 
described which will be utilized to apply several different 
methods of verification (sections 4.1 to 4.3). 
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Figure 3. Structural system (top) and cross-section (bottom) for the project example

The CLT-glulam rib deck with a span of L = 8.7 m is 
loaded by a combination of dead-load and live load for 
office occupation. The slab is a 140 mm 5-layered CLT 
with ribs spaced at 600 mm having the size 160/360 mm 
(GL24h) and being cut-back by 240 mm (see Fig. 3 and 
Fig. 4).

The design distributed load per unit area amounts to 
qd,max = 9.63 kN/m² and has the following contributions:

 self-weight rib-deck: g1,k = 1.30 kN/m²
 self-weight floor buildup: g2,k = 2.50 kN/m²

 office occupation category B2: qB2,k = 3.0 kN/m²

The structural analysis and verification was performed 
according to ÖNORM B 1995-1-1 [4], taking into 
account the effective width of bef = 543 mm (calculated 
according to FprEN 1995-1-1 [3]). The result yields 
utilisations of 45% (Md = 91.1 kNm/m) and 28% 
(Vd = 41.9 kN/m) for the ultimate limit state and for the 
usually governing serviceability limit state 100% 
(arms = 0.5 m/s²) and 39% (winst = 11.4 mm), when the cut-
back situation is neglected during the verification process.

Figure 4. Detail of the cross-section (left) and longitudinal section (right)

1108https://doi.org/10.52202/080513-0135



4 – DESIGN PROCESS

In this section, three different approaches to determine the 
maximum permissable design load per square meter of the 
slab (qd) are presented including a short model-
description.

The maximum design resistances for the previously 
described CLT slab with a layup of 40|20|20|20|40 mm of
KLH®-C24 material and a medium-term live load for 
office occupation (fm,k = 24 N/mm², fv,R,k = 1.2 N/mm², 
M =1.25 and kmod = 0.8) are as follows:

vx,Rd = 126.8 / 1.25 * 0.8 = 81.2 kN/m

mx,Rd = 72.46 / 1.25 * 0.8 = 46.4 kNm/m

These values are used to determine the maximum 
permissable design load per square meter qd in the 
following subchapters.

4.1 ANALYTICAL SOLUTION (DEQ)

The analytical solution, based on solving the set of
differential equations (DEQ), yields a maximum 
permissable design load per square meter of
qd,max,DEQ = 9,59 kN/m² (meaning nearly no reduction due 
to the cut-back situation). 

4.2 FINITE ELEMENT MODEL (FEM)

Suitable and sufficiently exact Finite Element models are 
using 2D shell elements for CLT slab and glulam beam – 
the use of 3D volumetric elements is not neccesary. When 
using 2D shell elements it is recommended to model the 
rib at least with 2 adjacent shells with each of them 
having only half of the thickness of the real rib (see green 
part of Fig. 5). 

To bridge the distance between the central plane of the 
CLT panel (brown part of Fig. 5) and the true geometric 
top of the glulam rib, the model utilises a transition layer 
that is only able to transfer in-plane shear (d88) and normal 
forces in z-direction (d77). Without this interlayer, the 
stiffness in this part of the section would be too high. The 
FE-model may also take advantage from using lines of 
symmetry at the midspan and also along the CLT edges in 
the centre between two adjacent glulam ribs to minimise 
the numerical effort. By comparing the difference 
between a symmetrical element (i.e. an inner rib element) 
with a free edge element (i.e. a rib element at the edge of 
the entire floor slab), it can be shown that the differences 
are negligeble as the shear-problem is local.

The solution for bending moment mx(x) yielded from 
solving the differential equations (DEQ) agrees very well 

with the results obtained from the 2D shell model (RIB-
2). This is slightly different for the shear force vx(x) as can 
be seein from Fig. 7. It should be noted that the DEQ 
solution is only valid within the range of applicability (i.e. 
the grey shaded area in Fig. 6) – and in this range it is on 
the conservative side.

Figure 5. 3D view of the 2D-FEM model (RIB-2) in the local support 
area

As an alternative to the rib model, excentric beams (again, 
1 to 8 adjacent ones) were introduced, but this approach 
gave less satisfactory results for the bending moment 
mx(x) and is therefore not recommended (EXC-2). For the 
shear force vx(x) the quality using excenters improved 
compared to the RIB-approach (see Fig. 7). 

The results used for verification of the FE solution (RIB-
2) are taken from the centerline (axis of the rib) and are
shown in the figure (Fig. 6) below.

Figure 6. Bending moment mx,Ed [kNm/m] and shear force vx,Ed

[kN/m]along the centerline from the RIB-2 model.

From the FE 2D-shell  model (RIB-2) a maximum 
permissable design load of qd,max,FEM = 11.97 kN/m² could 
be determined, while also considerable smaller values can 
be obtained for other modelling approaches (e.g variation 
in number of adjacent sub-ribs or excenters).
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Figure 7. Comparison of bending moment capacity mx (left) and shear capacity vx (right) calculated using different models (differential equation 
DEQ, 2D shell model RIB, plate model using excentric beams EXC) – plots are valid for a load of 9.59 kN/m² meaning 100% in shear for DEQ

4.3 ENGINEERING MODEL (ENG)

A very simplified method to verify the shear stresses in a 
ribbed CLT slab is presented in [5], see Fig. 8 below. 

Figure 8. Cross-section for verification of the resistance in the 
simplified engineering model in the support area.

The maximum permissable design load per square meter 
for the simplifed engineering model can be determined 
using (20). This equation takes into account that a certain 
part of the load (being the load acting between support 
axis and distance e, see Fig. 4) is distributed along the 
whole width of the panel. The main proportion of the load 
acting between (L – 2·e) has to be transferred throug the 
narrow section bENG = brib + 2·e (see Fig. 8).

, , = , 

The simplified engineering model solution yields a 
maximum permissable design load per square meter of 
qd,max,ENG = 7,68 kN/m² (meaning a reduction to 80% due 
to the cut-back situation).

4.4 MODEL SUMMARY

The results of the different modelling approaches are 
shown in the table below (see Tab. 1 ). It is evident that 
the design of a typical ribbed plate without cut-back is 
clearly dominated by vibration requirements (VIB), 
resulting in a maximum allowable design load of 9.63 
kN/m².

Table 1: Result summary: Maximum permisseable load per unit area 
in kN/m² for the considered models

Model description
qd,max qd,max,m qd,max,v

x=L/2 x=e x=e

without
cut-back

ULS 22.5
-SLS 24.5

VIB 9.63

with
cut-back

DEQ - 35.2 9.59

FEM 
1)

ULS 24.3 30.8 to 51.0
35.7 2)

1.78 to 12.0
12.0 2)

SLS 23.7 11%
stiffness reductionVIB 8.28 2)

ENG - 50.8 7.68
1) Result range depending on the used model (RIB-1 to RIB-8 and EXC-2)
2) Values obtained from RIB-2 model
3) Reduction of the eigenfrequency f1 by ca. 6%
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With the introduction of a cut-back, the situation is 
expected to shift towards the ULS situation, in particular 
to the shear check of the CLT panel in the region without 
rib. 

Depending on the model approach used to solve this 
problem, the maximum allowable design load may be 
lower, i.e. 7.68 kN/m² for the simple engineering model 
(ENG). Using the analytical solution (DEQ), it has been 
shown that almost the same external load is acceptable 
(9.59 kN/m²).  

When creating a 2D shell model (FEM), a range of 
acceptable loads can be obtained – strongly depending on 
the type of model (RIB, EXC, and especially number of 
ribs or excenters) and the mesh used. When taking the 
results in the centerline from the referenced RIB-2 model, 
the external load of 12.0 kN/m² seems acceptable 
(governed by shear), being on the upper limit of the result 
range from 1.78 kN/m² to 12.0 kN/m². 

The interpretation of FEM-results is often difficult and 
requires a lot of experience from the engineer – applying 
the DEQ approach does not suffer from these limitations. 

It is worth noting that stiffness and vibration are slightly 
influenced by the existence of a cut-back – it can be 
roughly stated that both values are reduced by about 10% 
for the presented example. 

5 – DESIGN GUIDANCE 

To address the local stress situation resulting from the 
cut-back rib, a finite element model (FEM) is a suitable 
solution, though it comes with some modelling effort and 
requires experience in result interpretation.  The herin 
presented new method based on solving the differential 
equations (DEQ) can be an effective alternative to 
address the problem at hand. The simplified engineering 
model (ENG) is conservative but may be used for a 
preliminary design. 

Depending on the spacing of the ribs and the distance 
between the support axis and the edge of the glulam rib 
(e), a local rolling-shear reinforcement (according to 
FprEN 1995-1-1 [3]) may be required to satisfy the 
rolling-shear design. 

The authors want to state that the situation with a cut-
back rib should be avoided if possible as it does not 
conform with the basic rules of timber engineering to 
avoid tension perpendicular to the grain by design. 
Anyways they are aware that building practice always 
will have its challenges and this paper wants to raise 
awareness and show possible ways to deal with such 
situations. 

6 – CONCLUSION 

The design of ribbed CLT-elements is usually governed 
by SLS conditions (typically vibration). In the case of 
cut-back ribs at the support area, this can shift to a ULS-
governed condition, in that specific case the rolling-shear 
design situation. Depending on the model approach 
(DEQ, ENG or FEM), the results obtained are varying to 
a certain extent. 

The presented analytical solution (DEQ) is very helpful 
to solve this local problem as it delivers a continuous 
function for the results (in contrast to different model 
approaches used in FEM). Therefore, the authors intend 
to prepare a set of equations to make this solution 
applicable for design practice (comparable to the 
equations for the effective width of CLT rib decks in 
FprEN 1995-1-1 [3]). 

A reinforcement perpendicular to the grain may be 
necessary, but this was not addressed in the paper by 
definition. Approaches to solve this can be found in [1] 
and [2]. 
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