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ABSTRACT: This paper deals with numerical investigations of cross laminated timber (CLT) beams. Previous 
investigations have revealed discrepancies between experimental test results and suggested design methods regarding 
shear force capacity of such beams. To gain further understanding of the failure behaviour and the shear force capacity, 
nonlinear finite element analyses have been performed, using a cohesive zone modelling approach for representation of 
the fracture behaviour of the bonding between laminations. Numerical results, analytical model predictions and findings 
from experimental tests are compared regarding the influence of different beam geometry parameters. The aim of the 
present work is to gain further understanding of the failure behaviour and shear force capacity of CLT beams, as such 
knowledge is needed for development of rationally based and reliable design methods.
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1 – INTRODUCTION
When used as a beam element, cross laminated timber 
(CLT) provides advantages compared to conventional 
glulam thanks to the reinforcing effect of the transverse 
layers with respect to stresses perpendicular to the beam 
axis. The stress distribution in CLT beams is however 
complex and design verifications regarding shear force 
capacity are non-trivial. Increased understanding of the 
mechanical behaviour and failure mechanisms is needed 
to better exploit the use of CLT as efficient beam elements 
in timber construction.

2 – BACKGROUND
Currently available design methods for CLT beams are 
based on simplified analytical models regarding the 
internal force and stress distribution, see e.g. [1].
Regarding shear failure mechanism III (FM III), involving 
longitudinal and rolling shear stresses acting in the 
crossing areas (the areas shared between flatwise bonded 
laminations of adjacent layers), criteria formulated in 
terms of rolling shear strength and torsional shear strength
have been suggested in [2,3] and are for example 
incorporated in the Canadian CLT Handbook [4]. 
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These failure criteria and the models suggested for stress 
analysis are based on several assumptions, e.g. linear 
elastic material behaviour.

Modifications of the model from [2,3] for stress analysis 
for shear FM III have been suggested in [1]. These two 
models differ regarding predicted influence of various 
beam geometry parameters. To evaluate the models in 
terms of their capabilities for prediction of load-bearing 
capacities, tests of prismatic five-layer CLT beams were 
carried out [5], using the test setup shown in Fig. 1.

All beams in that study, [5], had the same gross cross 
section (tgross = 140 mm and h = 600 mm) and the 
influence of three geometry parameters was studied: 

lamination width: bx = by = 100 mm and
bx = by = 150 mm
CLT layup: 40-20-20-20-40, 34-20-33-20-34
and 25-20-50-20-25
the length of the beam overhang at the support:
Le = 120 mm and Le = 400 mm

An overview of the beam geometries for the different test 
series is given in Tab. 1, with definitions of geometry 
parameters according to Figs. 1 and 2. 

Figure 1. Experimental test setup for prismatic CLT beams (left) and an example of a CLT beam during testing (right).  

(mm)

900 300 900

by

Le = 120Le = 120

Le = 400Le = 400

h
= 

60
0bx

1112https://doi.org/10.52202/080513-0136



The experimental results presented in [5] indicate very 
little or no influence of the lamination width and the CLT 
layup on the load-bearing capacity. In this respect, the test 
results contradict predictions of load-bearing capacities 
according to the abovementioned design methods.  

The experimental study in [5] was designed to investigate 
the shear force capacity and a setup with a low span-to-
depth ratio was hence used: L/h = 3.5. The final failures at 
maximum load (or after reaching maximum load) were 
however related to bending, with cracking and failure of 
the longitudinal laminations on the tension side of the 
beams. A gradual, and in many cases quite considerable, 
decrease in stiffness of the load vs deflection response 
was found before reaching the maximum load.  

The maximum bending stress, evaluated from technical 
beam theory at maximum load, was relatively low with 
mean values between 29.2 and 31.8 MPa for the test series 
presented in [5].  Previous tests of five-layer CLT beams, 
reported in [6], with similar cross section dimensions and 
layups but with greater span-to-depth ratio gave 
considerably greater mean values of the bending stress at 
failure: 39.7 MPa for L/h = 4800/600 = 8 and 36.5 MPa 
for L/h = 2400/600 = 4. 

Gradual damage of the bonding between laminations over 
the crossing areas is a possible explanation for the gradual 
loss of stiffness during loading. Such damage leads to 
decreasing composite action, stress redistribution and 
increasing bending of the individual longitudinal 
laminations. At increasing loading, bending failure may 
occur before complete shear failure occurs. This suggests 
that shear stresses acting over the crossing areas may be 
of great importance for the load-bearing capacity, 
although the final failure is not labelled as shear failure.  

The main aim of the present study is to gain knowledge 
and contribute to further understanding of the failure 
mechanisms for CLT under in-plane beam loading. A 
numerical study of the CLT beam tests reported in [5], 
with a test setup according to Fig. 1 and beam geometry 
parameters according to Tab. 1, has been performed. The 
approach adopted includes modelling the gradual damage 
of the bonding over the crossing areas, which enables 
studies of the influence of this mechanism on the internal 
force distribution and on the global beam response.  

Table 1: Test series geometries, with dimensions in mm. 

tx,1 ty,1 tx,2 ty,1 tx,1 bx = by Le 
A-100-L 40 20 40 20 40 100 400 
A-100-S 40 20 40 20 40 100 120 
A-150-L 40 20 40 20 40 150 400 
A-150-S 40 20 40 20 40 150 120 
B-100-L 33 20 34 20 33 100 400 
B-100-S 33 20 34 20 33 100 120 
B-150-L 33 20 34 20 33 150 400 
B-150-S 33 20 34 20 33 150 120 
C-100-L 25 20 50 20 25 100 400 
C-100-S 25 20 50 20 25 100 120 
C-150-L 25 20 50 20 25 150 400 
C-150-S 25 20 50 20 25 150 120 

3 – ANALYTICAL MODELS 
The analytical model for stress analysis of CLT beams 
presented in [1] originates from the work of Flaig & Blass, 
see [2] and [3]. To enable comparisons to the numerical 
results of the present study, some expressions for stresses 
and forces for relevant failure modes are given below.  

The considered analytical models are based on 
assumptions of linear elastic material behaviour and 
kinematic assumptions according to technical beam 
theory; plane beam cross sections remain plane during 
bending deformation. Beam geometry parameters 
according to Fig. 2 are considered and notations for 
lamination forces and moments are given in Fig. 3.  

The normal stress parallel to grain in the longitudinal 
layers, due to a bending moment M, can be expressed as 

σx =
M
Inet

y (1) 

where the net moment of inertia is given by Inet = txh3/12 
and where tx = Σtx,k.   

The normal stress in a specific lamination i,k can also be 
expressed by the lamination normal force Ni,k and the 
lamination bending moment Mi,k, according to  

σx,i,k =
Ni,k

Ai,k

Mi,k

Ii,k
yi (2) 

where Ai,k = tx,kbx, Ii,k = tx,kbx
3/12 and where yi is a local 

coordinate with yi = 0 at the centre of the lamination.  

Figure 2. Definition of beam geometry parameters, adapted from [1]. 

Figure 3. Forces and moments acting on a segment of a longitudinal 
lamination (left) and assumed shear stress distribution over a crossing 
area due to the torsional moment Mtor (right), adapted from [1]. 
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The torsional moments Mtor,i,k in crossing areas for CLT 
with five layers can according to [7] can be expressed as 

Mtor,i,k =
V by

nCA,k

tx,k

tx
αi

1
m3  (3) 

where m is the total number of longitudinal laminations in 
the beam depth direction and where nCA,k is the number of 
crossing areas that the considered longitudinal lamination 
shares with adjacent and transverse laminations, i.e. 
nCA,1 = 1 and nCA,2 = 2. The parameter αi describes the 
distribution of the lamination shear forces Vi,k in the beam 
depth direction, according to a parabolic shape with 
maximum values of αi and Vi,k close to the beam 
centreline.  

The torsional moments cause torsional shear stresses in 
the crossing areas (rolling shear and longitudinal shear), 
which are the dominating stresses for shear FM III, 
see [1]. According to (3), the shear force capacity with 
respect to FM III should be governed by the element layup 
and the maximum value of the ratio (1/nCA,k)∙(tx,k/tx).  

In the original model suggested by Flaig & Blass [2,3], the 
values of the torsional moments are based on (implicitly) 
assuming a uniform distribution in the beam width 
direction, irrespective of the element layup. This 
corresponds to assuming (1/nCA,k)∙(tx,k/tx) = 0.25 in (3), for 
CLT with five layers. The design equation suggested in 
[2,3] does further not consider a non-uniform distribution 
of torsional moments in the beam depth direction. This 
corresponds to assuming the parameter αi = 1/m in (3). 
The expression for the torsional moments, corresponding 
to (3), can with these assumptions be expressed as 

Mtor,i,k =
V by

nCA

1
m

1
m3  (4) 

where nCA is the total number of crossing areas in the 
beam width direction, i.e. nCA = 4 for five-layer CLT.  

The difference between (3) and (4) was one of the 
motivations for using the layups A, B and C according to 
Tab. 1 for the tests of CLT beams reported in [5]. The 
(maximum) values of the abovementioned ratio 
(1/nCA,k)∙(tx,k/tx) are for these three layups 0.40, 0.33 and 
0.25, respectively.  

The non-uniform distribution of the torsional moments in 
the beam width direction, according to (3), yields a 
predicted shear force capacity for FM III which is 
considerably greater for layup C compared to layup A. 
Predictions of shear force capacity for FM III according 
to (4) are equal for all layups (A, B and C), since the 
influence of the individual layer widths tx,k is not taken 
into account.    

4 – FINITE ELEMENT MODELLING 
CLT beams with geometries and loading conditions 
according to Tab. 1 and Fig. 1 have been studied, using 
nonlinear finite element (FE) models and a cohesive zone 
modelling approach implemented in the software 
Abaqus [8].  

The individual timber laminations were modelled as 
separate 3D linear elastic solids with orthotropic stiffness 
properties according to Tab. 2. Rectilinear material 
principal directions were assumed with the longitudinal 
(L) direction along the length of the laminations and the
tangential (T) and radial (R) directions along the
lamination width and thickness directions, respectively.
The laminations were modelled using linear 8-node
elements with full integration (denoted C3D8 in Abaqus).
Results presented in Section 5 are based on FE-meshes
consisting of approximately cubically shaped elements
with a side length of about 8 mm. Symmetry in two planes
was considered for all models.

The steel plates at the load introduction and at the supports 
were modelled using rigid surfaces. Contact was modelled 
between the rigid surfaces and the transverse laminations. 
This contact was modelled as hard contact with friction, 
with a coefficient of friction μ = 0.2. The loading was 
applied as prescribed displacement.  

The bonding between the laminations of adjacent layers 
was modelled using a surface-to-surface contact 
formulation, with hard contact in compression and with 
cohesive behaviour and strain-softening for the two in-
plane shear directions and tension. This formulation is 
defined by the material strengths in the two in-plane shear 
directions (fs1 and fs2) and the tensile strength (fn), the 
corresponding initial stiffnesses (ks1, ks2 and kn), the 
fracture energy (Gf) and a softening law. 

The initiation of softening was defined by a maximum 
stress criterion according to  

max
σn

fn
,
τs1

fs1
,
τs2

fs2
= 1.0 (5) 

where τs1 and τs2 are the two in-plane shear components 
and where σn refers to the normal (tensile) stress over the 
crossing area. Linear softening was assumed.  

This modelling approach has previously been used in [9] 
and [10] for studies of test setups, composed of two 
orthogonal laminations and a single crossing area, and 
designed for determination of rolling shear and torsional 
shear strength properties. Similar (or identical) values of 
model parameters used in those studies were used also for 
the present analyses:  fs1 = fs2 = 3.0 MPa, fn = 5.0 MPa, 
ks1 = ks2 = kn = 300 N/mm3 and Gf = 1.2 Nmm/mm2.  

Table 2: Material stiffness parameters for timber laminations. 

Modulus of Elasticity EL 12 000 MPa 
ET 400 MPa 
ER 600 MPa 

Shear modulus GLT 750 MPa 
GLR 600 MPa 
GTR 75 MPa 

Poisson’s ratio νLT 0.50 - 
νLR 0.50 - 
νTR 0.33 -
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For analyses presented in [9] and [10], reasonable 
agreement was found between numerical predictions of 
load-bearing capacity of single crossing areas and tests.   

By modelling strain softening after reaching the local 
material strength, the formation and development of 
fracture process zones in the crossing areas can be 
simulated. Since the timber laminations are modelled as 
linear elastic, failure and cracking due to for example 
tension parallel to grain is however not accounted for.  

4.1 INFLUENCE OF FE-MESH SIZE 
A study of the influence of the (finite) element size on the 
response was carried out for a beam geometry according 
to test series C-150-S, see Tab. 1. Results for the 
maximum shear force Vmax and the initial (elastic) beam 
stiffness ΔV/Δv are shown in Fig. 4. The results are 
normalized to the results for the reference element size of 
about 8 mm, which was used for analyses presented in 
Section 5. See Fig. 8 for the response in terms of shear 
force V vs displacement v for the reference case. 

4.2 INFLUENCE OF CONTACT STIFFNESS 
A study of the influence of the initial stiffness of the 
contact area kinit (= ks1 = ks2 = kn) on the response was also 
carried out for a beam geometry according to test series 
C-150-S, see Tab. 1. Results for the maximum shear force
Vmax and the initial (elastic) beam stiffness ΔV/Δv are
shown in Figs. 5 and 6, respectively. The results are
normalized to the results for the reference stiffness value
kinit = 300 N/mm3, which was used for analyses presented
in Section 5. See Fig. 8 for the response in terms of shear
force V vs displacement v for the reference case.

Increasing the initial stiffness to values above 900 N/mm3 
resulted in numerical issues and convergence problems 
before reaching the maximum load. Results presented in 
Fig. 5 are hence given only for kinit ≤ 900 N/mm3. The 
maximum load is however influenced only to a very 
limited extend by the contact area stiffness. The initial 
beam stiffness ΔV/Δv is clearly influenced for low values 
of the contact area stiffness but it is not influenced very 
much for stiffness values kinit ≥ 300 N/mm3. 

Figure 4. Relative maximum shear force Vmax and relative initial beam 
stiffness vs element size, normalized with respect to element size 8 mm.  

Figure 5. Relative maximum shear force Vmax vs contact area stiffness, 
normalized with respect to kinit = 300 N/mm3. 

Figure 6. Relative initial beam stiffness ΔV/Δv vs contact area stiffness, 
normalized with respect to kinit = 300 N/mm3. 

The distribution over the beam depth of the normal stress 
σx in the longitudinal laminations is shown in Fig. 7, for 
different values of the stiffness kinit. These results are 
based on (2) and on lamination normal forces Ni,k and 
bending moments Mi,k as found from linear elastic FE-
analyses by integration of stresses over the cross sections 
of the longitudinal laminations at the beam midspan (the 
plane of symmetry in x-direction). The stress values are 
normalised with respect to the maximum normal stress 
according to the analytical model, according to (1).  

The results of the numerical models show staggered stress 
distributions with more bending of the individual 
laminations, compared to the assumption of the analytical 
model with a linear stress distribution over the entire beam 
depth. There are very small differences in the numerical 
results between the internal and external longitudinal 
layers (in the beam width direction), less than 0.2%.  

The mean values (for the two layers in the beam width 
direction) of the maximum normalised stress are 1.309, 
1.222, 1.205 and 1.202 for initial stiffness values kinit of 
30, 300, 900 and 1500 N/mm3, respectively. The normal 
stress distribution thus seems to be insensitive to the 
assumed initial stiffness for values above 300 N/mm3. 
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Figure 7. Normalised stress over beam depth for FE-analyses at linear 
elastic stage, for different values of the contact area stiffness kinit. 

The staggered normal stress distribution and the 
differences compared to the linear stress distribution 
according to technical beam theory, (1), is partly related 
to the specific geometry, with a low span-to-depth ratio 
and load introduction close to midspan (where the stresses 
are evaluated). Increasing the distance between the point 
loads from 300 mm to 600 mm (see Fig. 1) gives a mean 
value of the maximum normalised stress of about 1.11 for 
an initial stiffness value kinit = 300 N/mm3. 

5 – RESULTS AND DISCUSSION 
Numerical results in terms of the shear force V vs beam 
deflection v for a beam geometry according to test series 
C-150-S are shown in Fig. 8. Four load levels are marked
with circles: V0 represents the last load step before fracture
initiation in the crossing areas, V40 represents the load at
which the maximum normal tensile stress σx = 40 MPa,
Vmax represents the maximum shear force and Vend
represents the load level at the end of the analysis.

Normal stress distributions over the beam depth at 
midspan are shown in Fig. 9 for the four load levels given 
in Fig. 8, with both normalised and absolute values. These 
stress distributions were determined in the same manner 
as described above, i.e. from (2) and from lamination 
normal forces Ni,k and lamination bending moments Mi,k 
as found from the FE-analyses by integration of stresses 
over the cross sections of the longitudinal laminations at 
beam midspan. 

From the FE-analysis, a maximum normal tensile stress 
σx = 40 MPa was found at a shear force of V40 = 207 kN. 
The maximum normal tensile stress at this level of 
external load is only 30.9 MPa according to the analytical 
model and (1). 

Results presented in Fig. 9 further show how the bending 
of the individual laminations gradually increases as the 
prescribed displacement is increased, especially for the 
two centrically placed laminations.  

Figure 8. Shear force V vs beam deflection v for C-150-S. 

Figure 9. Stress over beam depth for FE-analyses at different stages of 
the shear force vs beam deflection response for C-150-S. 

Comparisons between the response in terms of shear 
force V vs beam deflection v as found from experimental 
tests and as found from FE-analyses are presented in 
Fig. 10, for all test series given in Tab. 1. The marks 
(circles) for the numerical results indicate the respective 
load levels at which the maximum parallel to grain tensile 
stress in the longitudinal laminations at beam midspan 
corresponds to σx = 40 MPa. 
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The beam geometries for the test series shown in Fig. 10
differ regarding three aspects (see Tab. 1): the element 
layup (A, B and C), the lamination width b (100 mm and
150 mm) and the length of the overhang at the support Le
(120 mm (S) and 400 mm (L)). 

For all test series, the mean value of the experimentally 
obtained maximum shear force was greater for test series 
with a long overhang at the support (L, Le = 400 mm) than 
for test series with a short overhang at the support (S, 
Le = 120 mm). This trend was also found from the FE-
analyses, with greater values of Vmax for the test series 
with a long overhang at the support. 

It is however important to stress that the FE-models are 
based on linear elastic material behaviour for the
laminations and that fracture and softening is only 
modelled within the bonding areas between laminations. 
The FE-models can hence not be expected to accurately 
capture the behaviour of the tests at load levels around the 
maximum load, since cracking and failure of the 
longitudinal laminations due to bending was observed in 
the tests. The range of values for the experimentally 
obtained maximum shear forces, 180–220 kN, agrees well
with the range of shear forces corresponding to a 
maximum tensile stress σx = 40 MPa; 177–209 kN. 

Figure 10. Experimental and numerical results in terms of shear force V vs beam deflection v for all test series reported in [5]. The circles represent the 
load level denoted V40, which corresponds to a maximum parallel to grain tensile stress σx = 40 MPa, see Figs. 8 and 9.
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5.1 FRACTURE IN CROSSING AREAS
The development of fracture process zones over the 
crossing areas is illustrated in Fig. 11, where the internal 
longitudinal laminations (k = 2) are shown at four 
different load levels, for beam geometry C-150-S (see also 
Figs. 8 and 9). Softening is first initiated in the crossing 
areas at the beam centreline, connecting the longitudinal 
laminations to the fourth transverse lamination from the 
left. As loading is increased, softening is also initiated in 
several crossing areas in the beam length direction and at 
the upper- and lowermost crossing areas, see Fig. 11a).

Figure 11. Development of fracture process zones over the crossing areas
on the internal longitudinal laminations for C-150-S, by Abaqus damage 
parameter (CSDMG). Deep blue represents undamaged state (linear 
elastic) and deep red represents severely damaged state. Deformations 
are scaled by a factor of 10. 

The zones experiencing softening and diminishing stress 
transferring capacity expand during further loading. At a 
shear force of V40 = 207 kN, see Fig. 11b), fracture 
process zones are found along all four sides of the 
perimeter of the crossing areas which are centrically 
placed in the beam depth direction (i = 2, 3) and located 
between the loading point and the support point. 

When reaching the maximum load of Vmax = 267 kN, see 
Fig. 11c), the damaged zones cover a large part of several 
crossing areas. At this stage, significant horizontal sliding 
between the two centrically placed longitudinal 
laminations can also be seen. During loading by increased 
prescribed displacement v, and decreasing shear force V, 
the fracture process zones extend further and the sliding 
between the neighbouring longitudinal laminations 
increases, see Fig. 11d).

Results for crossing area torsional moments Mtor,i,k vs 
beam deflection v are shown in Figs. 12 and 13, for beam 
geometries C-150-S and A-150-S. The torsional moments 
were determined from integration of shear stresses in the 
crossing areas for a location in the beam length direction 
corresponding to the fourth transverse lamination from 
the left side of the beam as seen in Fig. 11. 

Figure 12. Crossing area torsional moments Mtor,i,k (and shear force V) 
vs the beam deflection v for beam geometry C-150-S.

Figure 13. Crossing area torsional moments Mtor,i,k (and shear force V) 
vs the beam deflection v for beam geometry A-150-S.

a) V = 73 kN

d) Vend = 256 kN

c) Vmax = 267 kN

b) V40 = 207 kN

i = 4

i = 3

i = 2

i = 1
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Beam geometry C-150-S, with layup 25-20-50-20-25, has 
a constant value of the ratio (1/nCA,k)∙(tx,k/tx) = 0.25 for all 
crossing areas (k = 1 and 2) in the beam width direction. 
The analytical model, according to (3), hence yields equal 
values of the torsional moments for crossing areas k = 1 
and 2 for a certain lamination placement i in the beam 
depth direction, i.e. Mtor,i,1 = Mtor,i,2. This characteristic is 
indeed confirmed by the FE-analysis. As can be seen in 
Fig. 12 for C-150-S, Mtor,i,k are almost identical for the two 
crossing areas in the beam width direction (k = 1 and 2). 
Differences between the two crossing areas in the width 
direction are seen only at late stages of loading.  

Furthermore, (3) gives different values of the torsional 
moments Mtor,i,k in the beam depth direction, due to the 
factor αi. For the considered geometry, C-150-S, with 
m = 4 laminations in the beam depth direction, the values 
of the factor αi are α1 = α4 = 5/32 and α2 = α3 = 11/32 
according to [8]. Equation (3) then predicts a ratio 
between the torsional moments in the centrically placed 
crossing areas (i = 2 and 3) and externally placed crossing 
areas (i = 1 and 4) of 2.33. This agrees rather well with the 
numerical results during the initial (elastic) stage of 
loading, before initiation of softening. The ratios between 
the corresponding torsional moments found from the FE-
analysis and shown in Fig. 12 are in the range of 2.0–2.1 
during this stage.  

However, as softening is initiated in the crossing areas, 
stress redistribution takes place and the relative 
distribution of the torsional moments in the beam depth 
directions changes. The torsional moments in the 
centrically placed crossing areas (i = 2 and 3) reach their 
respective maximum values at a shear force of about 
250 kN, see Fig. 12. During further loading, with 
increased prescribed displacement v (and eventually 
decreasing shear force), a state is reached with almost 
equal torsional moments for all crossing areas, both in the 
beam width and in the beam depth direction.  

Beam geometry A-150-S, with layup 40-20-20-20-40, has 
ratios (1/nCA,k)∙(tx,k/tx) = 0.40 for k = 1 and 0.10 for k = 2. 
The analytical model, according to (3), hence yields 
different values of the torsional moments Mtor,i,k for 
crossing areas k = 1 and 2 for a certain lamination i. The 
ratio between the torsional moments of the external 
(k = 1) and the internal crossing area (k = 2) in the beam 
width direction is hence 4.0, according to (3). The non-
uniform distribution, in the width direction, of the 
torsional moments, is indeed confirmed by the FE-
analysis. However, as evidenced by the results seen in 
Fig. 13, the ratios between the torsional moments for k = 1 
and k = 2 are smaller, approximately 1.7 during the initial 
(elastic) stage. 

As loading is increased and fracture process zones 
develop, the distribution of the torsional moments 
between the crossing areas changes. Before reaching the 
maximum shear force for A-150-S, the torsional moments 
are greater in the internal crossing areas (k = 2) than in the 
external crossing areas (k = 1). As seen in Fig. 13, this 
changes during the course of loading. When the load 

approaches its maximum, from approximately 13.5 mm 
deflection, instead the torsional moments for k = 2 are 
greater than for k = 1. 

5.2 LONGITUDINAL LAMINATIONS 
The beam gross cross section is exposed to bending (and 
shear) while the individual longitudinal laminations are 
exposed to a combination of bending and axial 
compression/tension (and shear). The gradual damage, 
which leads to a loss of stiffness of the connections 
between longitudinal and transverse laminations, 
influences the bending behaviour of the gross cross 
section and the individual laminations. As softening is 
initiated in the crossing areas, the contact stiffness 
decreases, and the individual longitudinal laminations are 
exposed to more bending in relation to axial 
compression/tension.  

The lamination bending moments Mi,k and normal forces 
Ni,k for beam geometries C-150-S and A-150-S are shown 
in Figs. 14 and 15, respectively. The values are 
determined by integration of stresses over the lamination 
cross sections at the beam midspan (at the plane of 
symmetry in the x-direction). For laminations in the plane 
of symmetry in the z-direction (k = 2), values of Ni,2 and 
Mi,2 refer to the full cross section of the laminations, 
i.e. Ai,2 = bx tx,2.

Figure 14. Lamination bending moments Mi,k (top) and normal forces 
Ni,k (bottom) vs the beam deflection v for beam geometry C-150-S. 
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Figure 15. Lamination bending moments Mi,k (top) and normal forces
Ni,k (bottom) vs the beam deflection v for beam geometry A-150-S.

As can be seen in Figs. 14 and 15, the lamination bending 
moments Mi,k continuously increase for all laminations i,k
for both beam geometries, at least up to the point where 
the respective maximum shear forces Vmax are reached. 
For beam geometry C-150-S, the bending moments Mi,k
also keep increasing after reaching the maximum load. 
The lamination normal forces Ni,k do however reach their 
respective maximum values before the respective 
maximum shear forces are reached.

For beam geometry C-150-S, see Fig. 14, the maximum 
normal forces in the centrically placed laminations, i = 2 
and 3 (i.e. N2,1, N2,2, N3,1 and N3,2), reach their respective 
maximum values at a beam displacement v ≈ 12 mm and 
a shear force V ≈ 245 kN. At further increased loading by 
prescribed displacement, the gradual damage and 
softening over the crossing areas (see Fig. 11) result in 
increased bending of the individual laminations and the 
ratios between the respective lamination bending 
moments Mi,k and normal forces Ni,k increase. 

The same general observations are also valid for beam 
geometry A-150-S, see Fig. 15. For this geometry, the 
increased bending of individual laminations is most 
obvious for laminations i = 2, 3 and k = 1, i.e. the 
centrically placed laminations in the beam depth direction 
and the external layer in the beam width direction. 

For beam geometry A-150-S, the initiation of fracture in 
the crossing areas takes place in the corresponding 
location, i.e. i = 2, 3 and k = 1. As can be seen in Fig. 13, 
the torsional moments Mtor,2,1 and Mtor,3,1 are initially the 
greatest but diminish considerably after reaching their
respective maximum values at a beam displacement 
v ≈ 12 mm and a shear force V ≈ 235 kN. 

5.3 LENGTH OF BEAM OVERHANG 
Some final observations can be made regarding the 
influence of the length of the beam overhang at the 
support, Le, see Fig. 1. From tests reported in [5], the mean 
values of the maximum shear forces were found to be 
slightly greater (about 10%) for the test series with a long 
overhang at the support (L, Le = 400 mm) compared to the 
test series with a short overhang (S, Le = 120 mm). From 
the numerical results presented in Fig. 10, the maximum 
shear forces are also consistently greater for the test series
with a long overhang at the support. There are however 
only small differences between the different overhang 
lengths regarding the shear force level V40, corresponding 
to a maximum normal tensile stress σx = 40 MPa.

The distributions of parallel to grain normal stress in the 
longitudinal laminations, as found from the FE-analyses, 
are very similar for geometries C-150-L (Le = 400 mm)
and C-150-S (Le = 120 mm) in the initial stage of loading, 
roughly up to a maximum tensile stress of 35–40 MPa. At 
further loading, the loss of stiffness over the crossing areas
results in considerable sliding between the longitudinal 
laminations for C-150-S. For C-150-L, the crossing areas 
in the overhang zone are not severely damaged and the 
overhang partly prevents sliding between the longitudinal 
laminations. Illustrations of deformations and normal 
stresses are shown in Fig. 16, for the two respective final 
stages of loading according to Fig. 10. 

Figure 16. Parallel to grain normal stress at final stage of analyses for 
beam geometries C-150-L (top) and C-150-S (bottom). Dark grey 
represents stresses σx ≤ −45 MPa and light grey represents stresses 
σx ≥ 45 MPa. Deformations are scaled by a factor of 10.
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6 – CONCLUDING REMARKS 
The analytical model for the torsional moments Mtor,i,k 
according to (3) appears to capture the distribution of 
torsional moments with reasonable accuracy in the elastic 
range, compared to results of FE-analyses presented in 
this paper. This has also been shown in previous 
numerical studies based on linear elastic material 
behaviour, see e.g. [1,11].  

With the approach adopted in the present paper, allowing 
for gradual damage and softening in the crossing areas, it 
has however been shown that the distributions of torsional 
moments between crossing areas in the beam width and 
depth directions change during loading. The initial elastic 
stress distribution may hence not be directly relevant for 
prediction of the ultimate load-bearing capacity. Other 
distributions with a (more or less) uniform distribution of 
torsional moments may be more relevant, for example as 
suggested in (4), see [2,3]. Considering approaches for 
practical design of CLT beams, it may be reasonable to 
disregard the influence of the element layup in terms of 
the individual layer thicknesses. 

Test results from [5] and numerical results presented here 
both suggest that interaction of failure mechanisms 
eventually lead to final failure. The only failure 
mechanism explicitly modelled in the current FE-analyses 
is failure in the crossing areas, while linear elastic material 
behaviour is assumed for the timber laminations. The 
maximum tensile stress parallel to the grain in the 
longitudinal laminations (at maximum load) is in the 
range of 47–53 MPa for test series with lamination width 
b = 100 mm and in the range of 55–64 MPa for test series 
with lamination width b = 150 mm.  The numerical results 
hence indicate that bending failure can be expected before 
reaching the maximum load found from the FE-analyses.  

The presented numerical results suggest that the gradual 
damage and the softening in the crossing areas lead to 
increased bending of the individual longitudinal 
laminations and decreased composite action. This is 
especially seen for the longitudinal laminations which are 
centrically placed with respect to the beam depth 
direction. The applied load configuration, with a low 
span-to-depth ratio and with load introduction close to 
beam midspan, gives however a normal stress distribution 
which deviates from the linear stress distribution assumed 
according to (1) already in the initial elastic stage.   

The results presented here represent ongoing work and 
further investigations are planned. One aspect which has 
currently not been thoroughly examined is the influence 
of the lamination width. The present analyses are further 
based on several assumptions regarding criteria for 
fracture initiation and values for material strengths, 
stiffnesses and fracture energy. The modelling approach 
used in the present work is however believed to be very 
useful for gaining further knowledge about the 
mechanical behaviour of CLT beams and is hence 
expected to be valuable for further development of 
rational and reliable methods for practical design. 
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