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ABSTRACT: This study presents the key steps in developing a robust computational framework that can represent the
inherent uncertainties of mechanical properties in wood veneer laminates subjected to progressive fracture tests. A large
dataset derived from efficient finite element simulations of compact tension tests serves as the foundation for developing
a machine learning surrogate model by means of Gaussian process regression. This fast, yet accurate surrogate model is
then coupled with a Markov Chain Monte Carlo method and statistical measurements from experiments to estimate the
uncertainty of each finite element input parameter that contributes to the measured uncertainty of the experiments. This
framework combines various computational methods to account for uncertainties in the simulation of thin wood veneer
laminates, hence paving the way for efficient and realistic finite element simulations of wooden materials that can guide

the design of safe and reliable structures.
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1 - INTRODUCTION

The transportation sector is directly or indirectly respon-
sible for a large part of the world’s greenhouse gas emis-
sions. Similar to many other countries, Australia has com-
mitted to a net zero emission target by 2050. Therefore,
the use of sustainable lightweight materials from renew-
able resources is crucial for reducing emissions in trans-
port applications [6].

Thanks to its capability to absorb and store carbon,
wood is regarded as an environmentally friendly material,
in contrast to conventionally used metals such as steel and
aluminium. Many analytical and empirical methods exist
to estimate the mechanical behaviour of wood structures,
mostly limited to static loading conditions and elastic prop-
erties.

With the goal of introducing thin wood veneer laminates
into future transport applications, extreme loading scenar-
ios, such as dynamic load-bearing and crash-loaded struc-
tures, become relevant [8]. In these cases, most analyti-
cal methods are not applicable. Hence, more sophisticated
simulation tools, such as Finite Element Analysis (FEA),
are needed to predict the mechanical behaviour of wood
veneer laminates in these load cases, with an emphasis on
damage resistance [13]. Furthermore, the conventional ap-
plication of wood veneers is insufficient to satisfy the crit-
ical safety standards (e.g. stiffness, strength, crashworthi-
ness) in the automotive industry, therefore simulations can
aid in optimising wooden structures with respect to thick-
ness, weight or layup.

To accurately simulate the mechanical behaviour of nat-
ural products such as wood veneers, it is essential to ac-
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count for their natural variation in mechanical properties.
These variations may result from differences in geographi-
cal location, age of the tree, temperature, and moisture con-
tent. While many FEA studies of wood focus on replicat-
ing average values measured from experiments, they often
overlook these inherent uncertainties. Typically, a single
set of FEA input parameters is proposed to replicate the
mean of experimental measurements.

Markov Chain Monte Carlo (MCMC) methods can es-
timate distributions of input parameters rather than single
deterministic values [12]. However, these methods require
many model evaluations, making them computationally
expensive. To address this limitation, Machine Learning
(ML) surrogate models can be developed to achieve the re-
quired speed-up [15]. These ML surrogate models can be
trained and validated using data obtained from physically
meaningful FEA results [17, 20].

This study presents a combination of FEA, ML and
MCMC methods to estimate the distribution of various
FEA input parameters in order to represent the variation
in measured load vs displacement data obtained from com-
pact tension tests of thin Beech veneer laminates [16].
This study builds on a collaboration with the German
Aerospace Center (DLR) to explore safe and reliable de-
signs of thin wooden structures as a sustainable alternative
in future transport applications [6].

2 — MATERIALS & EXPERIMENTS

The material of interest is rotary-cut European Beech
(Fagus sylvatica) veneers, procured from Metz & Co,
Germany. Quasi-isotropic [90/45/0/ — 45]¢ veneer lam-
inates were manufactured by stacking up individual ve-
neer plies with varying grain orientations. The adhesive
PURBOND HB S109 [7] was applied to each ply with a



glue spread of 90-100 g/m? before consolidating the lami-
nates in a hydraulic press. The laminates were uniformly
pressed at 1 MPa for 20 hours to ensure complete curing
of the adhesive and to eliminate press time as a potential
variable influencing the mechanical behaviour. The aver-
age thickness of these laminates after manufacturing was
4.37 mm. The moisture content of the laminates is approx-
imately 8% — 12% [10].

Compact Tension (CT) tests are suitable to measure
damage resistance. Here, double-tapered CT test sam-
ples (more details in Section 3.1), were used to eval-
uate progressive crack growth in the quasi-isotropic
[90/45/0/ — 45], Beech veneer laminates [16]. The tests
were performed using an Instron 4505 testing machine
with a 10 kN load cell and a cross-head displacement rate
of 0.5 mm/min. Figure 1 shows the resulting force vs
displacement graphs obtained from 10 CT tests. In addi-
tion, Open-Hole Tension (OHT) tests were conducted [16],
consisting of 140 mm long and 20 mm wide test samples
clamped at both ends over a length of 15 mm. The central
hole has a diameter of 12 mm (more details about the ge-
ometry can be found in Section 4). The analysis of 20 OHT
tests resulted in an average OHT strength of 17.3 MPa with
a coefficient of variation of 6.9%.
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Figure 1: Force vs displacment graphs from 10 compact ten-
sion tests on quasi-isotropic [90/45/0/ — 45]s Beech veneer lam-
inates.

During manufacturing and mechanical testing, care was
taken to achieve high-quality test samples, and to min-
imise the spread of mechanical properties. Nevertheless,
as shown in Figure 1, the mechanical behaviour of the nat-
ural material can vary significantly, necessitating the ap-
plication of simulation methods that can represent these
uncertainties.

3 — BAYESIAN PARAMETER ESTIMA-
TION: SIMULATION OF COMPACT
TENSION TESTS

The Bayesian method assumes parameters to be ran-
dom variables whose unknown probability distributions,
referred to as posterior distributions, quantify the proba-
bility of assuming any value in the considered parame-
ter space. MCMC is one of the most popular Bayesian
methods. It evaluates stochastic processes of “walkers”
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to explore the full parameter space efficiently in order to
find posterior distributions. To quantify the uncertainty
measured in CT tests of the Beech veneer laminates using
MCMC, fast FEA models and even faster ML surrogates
are required.

3.1 FINITE ELEMENT ANALYSIS

The mechanical behaviour of the [90/45/0/ — 45];
Beech veneer laminates is described by the strain-based
COMposite DAMage Model (CODAM?2). This material
model is incorporated as MAT219 in the commercial FEA
software LS-DYNA [9]. A detailed description of the
material model can be found in related literature [2, 3,
19]. Figure 2 illustrates the constitutive behaviour of
CODAM?2 in the principal directions of a veneer ply in
the grain (longitudinal) direction and perpendicular (trans-
verse) to it. In total, the material model requires eight in-
put parameters: four related to the elastic behaviour (Ej,
E,, Gy, and vy,), and four strain-based inputs related to
damage onset and evolution (¢, €}, €, €3).

Longitudinal direction Transverse direction

FA Em = f(E2,G19)

Figure 2: Illustration of CODAM? stress-strain curves in (a) lon-
gitudinal (grain) and (b) transverse direction.

CODAM?2 is capable of describing laminate behaviour
using a single through-thickness integration point. This
feature makes CODAM2 a significantly more efficient ma-
terial model in comparison to other continuum damage
models that require assigning ply-based material proper-
ties to multiple integration points through the thickness to
describe laminates with various ply angles. The enhanced
efficiency of CODAM?2 further facilitates its integration
with data-driven calibration methods, such as genetic al-
gorithms [4] and ML [17, 20].

The CODAM2 material model is applied to simu-
late progressive damage in CT tests shown in Figure 3.
The FEA model features a mesh that incorporates only
one shell element through its thickness. Within the ex-
pected fracture process zone, the in-plane element size
is I mm X 1 mm. A displacement is prescribed to the
rigid loading pins (grey) in opposite vertical directions,
as illustrated in Figure 3. The modelling of the quasi-
isotropic [90/45/0/ — 45]5 Beech veneer laminates con-
sisting of only one through-thickness shell element leads
to highly efficient computation times. A single CT simu-
lation only takes 2—3 minutes on a conventional computer
with 4-8 CPUs.

Such high efficiency is necessary to create large datasets
for training and testing of ML surrogate models. Here,
6,000 FEA simulations with varying input parameters
have been conducted. Table 1 lists the range of input pa-
rameters used to create the large dataset. Note that the
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Table 1: Range of FEA input parameters to create large datasets for the generation of machine learning surrogate model.

Description Input parameter  Uniform range
Longitudinal modulus E, 7.5-20 GPa
Transverse modulus E, 0.5 -4 GPa
Longitudinal damage initiation strain el 001-2%
Transverse damage initiation strain € 0.01-2%
Longitudinal damage saturation strain & 2-20%
Transverse damage saturation strain & 2-20%

8 mm

70 mm

90 mm

Figure 3: Geometry and dimensions of FEA model to simulate
progressive damage evolution in compact tension tests.

in-plane Poisson’s ratio v;, = 0.073 and shear modulus
G, = 1.08 GPa are held constant [13].

A global sensitivity analysis on this large dataset indi-
cates that only three input parameters are critical for simu-
lating the force vs displacement responses in CT tests [15].
These inputs relate to the grain (longitudinal) direction of
a veneer ply, namely E;, €} and &5,

3.2 MACHINE LEARNING

To create faster model evaluations, the large dataset
from FEA simulations is divided into 80% for training and
20% for testing. Gaussian Process Regression (GPR) is
used in Python to develop fast ML surrogate models of the
CT tests, with the aim of reproducing the complete force
vs displacement curve based on the three critical FEA in-
put parameters. Hence, the GPR inputs are Ej, €} and &,
and the outputs are force vs displacement data. The GPR
kernel selection was fine-tuned, with the optimal config-
uration determined based on mean squared error and R?
scores from cross-validation. The Exp-Sine-Squared ker-
nel, characterised by a length scale parameter [ and a peri-
odicity parameter p, was identified as the optimal kernel.
Here, the optimal kernel parameters are [ = 1 and p = 3.
The application of the testing data revealed a root mean
squared error of 0.0615 kN. Figure 4 shows selected com-
parisons of force vs dispalcement graphs obtained from
actual FEA and the developed ML surrogate model. The
results demonstrate that the trained GPR model is capable
of replicating the simulated force vs displacement curves
with reasonable accuracy. A notable advantage of using
GPR simulations is the ability to rapidly evaluate multiple
ML surrogates within seconds, thereby providing a conve-
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nient and efficient method for estimating force vs displace-
ment graphs.
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Figure 4: Examples of force vs displacement graphs in compact
tension tests obtained from actual FEA simulations (solid lines)
and machine learning surrogates (dashed lines).

3.3 MARKOV CHAIN MONTE CARLO
MCMC generates samples that estimate the input pa-
rameters by taking into account the prior distributions of
the FEA input parameters, the experimental data shown
in Figure 1, as well as the fast ML surrogate model out-
lined in previous section. Bayes’ rule [5] in Equation (1)
can estimate the posterior density p(X;eq|cs)s Where X;eq
denotes reduced FEA inputs Ej, zi and ¢, and y, ., the ex-

perimental data from CT tests shown in Figure 1.
p(xred|ytest) & p(xred) (1)

prior

p(ytes[ Ixred)
~—_——

posterior likelihood

Bayes’ rule states that the posterior density is proportional
to the product of assumed prior densities p(x,.q) of the
FEA inputs and the likelihood p(y,.|Xeq)- The likelihood
is evaluated by the GPR surrogate model M(x,.4), and is
assumed to follow a distribution such that

p(ytest|xfed) =N ((ytest - M(xred))’ Ztest) > (2)

where the experimental data follow a multivariate normal
distribution y, . ~ N (fes> Ziest)> With mean vector fleq
and covariance matrix X, representing the average force
vs displacement curve from experiments and their standard
deviation, respectively.

To conduct MCMC, the affine invariant ensemble sam-
pler implemented in the EMCEE Hammer [1], available
in Python, is employed. Upon reaching convergence, Fig-
ure 5 shows the resulting MCMC simulations, which use



the computed distributions of FEA input parameters. It
can be seen that these simulations are capable of replicat-
ing the variation observed in experimental CT tests. The
assumed prior distributions and the resulting posterior dis-
tributions of the three FEA input parameters Ej, €} and &}
are shown in Figure 6. These results show that the pos-
terior distributions for E; and & differ significantly from
their assumed uniform priors. The selection of the nor-
mal prior for ) was informed by a previous study on us-
ing genetic algorithms to estimate this distribution [13].
The obtained distributions enable the simulation of me-
chanical tests, including the consideration of uncertainty
in [90/45/0/ — 45], Beech veneer laminates.
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Figure 5: Comparison of force vs displacment graphs from exper-
iments and FEA simulations using inputs sampled from posterior
distributions shown in Figure 6.

4 — VALIDATION: SIMULATION OF
OPEN-HOLE TENSION TESTS

The CT tests outlined in Section 2 served as calibration
of the distributions of the sensitive FEA input parameters
shown in Figure 6. To validate these results, the OHT tests,
described in Section 2, are simulated using the FEA in-
put parameters sampled from these distributions. The re-
maining FEA input parameters use nominal values derived
from a previous study [13] (E, = 2.28 GPa, €, = 0.65 %
and &5 = 8.1 %).

As shown in Figure 7, the FEA simulation of the OHT
test uses fully constrained nodes at one edge of the test
sample, while a prescribed displacement is applied to the
opposite edge. Here, 1,000 FEA simulations are evaluated
with the sensitive FEA input parameters sampled from the
posterior distributions obtained from MCMC and the nom-
inal values for other input parameters.

Figure 8 compares the distributions of the OHT strength
obtained from experiments and FEA simulations. It can be
seen that the simulations not only predict the mean OHT
value accurately but also estimate the variation of the mea-
sured OHT strength. Table 2 provides a quantitative com-
parison of these findings. The mean OHT strengths are
closely aligned, with values of 17.3 MPa and 17.5 MPa for
the experimental and simulated results, respectively. The
coefficient of variation is 6.9% for the experimental data,
compared to 10.5% for the simulated OHT tests. In addi-
tion, the results agree qualitatively. Figure 9 shows the
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result of a representative FEA simulation in comparison
to an image of an OHT specimen after testing. The simu-
lation shows the contour plot of the longitudinal damage
variable associated with the vertical grain direction (0° ply)
of the [90/45/0/ — 45], Beech veneer laminate. Both the
simulation and the experimental results indicate the pres-
ence of damage around the open hole, with the direction
of damage propagation being perpendicular to the applied
loading direction.

Table 2: Comparison of open-hole tensile strength in [90/45/0/—
45]g Beech veneer laminates.

Experiments®  Simulations™*
Mean 17.3 MPa 17.5 MPa
Coefficient of variation 6.9% 10.5%

* based on 20 tests.
** based on 1,000 FEA simulations.

5 — DISCUSSION

The simulation results from the validation against OHT
tests demonstrate that the presented framework can effec-
tively predict the variations observed in mechanical tests
of quasi-isotropic [90/45/0/ — 45|, Beech veneer lami-
nates. This unique capability will enable the virtual de-
velopment of design standards for crashworthiness of thin
wood veneer laminates, which may be used in future auto-
motive applications.

The mechanical tests conducted in this study were se-
lected to be in the tensile direction, acknowledging that
such tests have been successfully conducted in both ex-
periments [16] and simulations [13]. It should be noted
that other loading scenarios, such as compression or shear-
dominated load cases, are equally important. Similarly,
strain-rate sensitivities [14] should be taken into account
when investigating crashworthiness involving highly dy-
namic loading conditions.

The presented framework integrates a range of compu-
tational techniques, each of which may be replaced with
alternative methods. For example, FEA material models
other than CODAM2 can be explored for the simulation
of progressive damage in wood veneer laminates [11]. In
particular, LS DYNA’s MAT143 [18] is a promising can-
didate as it is specifically formulated for wood materials.
Nevertheless, this material card is currently restricted to
solid elements, which significantly increases the computa-
tional cost associated with simulating the mechanical be-
haviour of thin-walled wood veneers. Regarding ML sur-
rogate models, alternative regression techniques can be
considered. It has been demonstrated that Long Short-
Term Memory (LSTM) architectures are capable of accu-
rately representing load vs displacement curves obtained
from carbon fibre reinfroced composites subjected to com-
pact tension tests [17].

Within MCMC, a common challenge is the justified se-
lection of prior distributions. It is known that Bayesian
methods are sensitive to prior distributions. In instances
where limited knowledge is available, uniform distribu-
tions, or flat priors, are typically used. Here, uniform pri-
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Figure 6: Prior and posterior distributions of sensitive FEA input parameters used in Markov Chain Monte Carlo method.
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Figure 7: Geometry and dimensions to simulate open-hole tension test with hole diameter D = 12 mm.
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Figure 8: Experimental and simulated distributions of open-hole
tensile strength in [90/45/0/ — 45]s Beech veneer laminates.
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Figure 9: Qualitative damage comparison between representa-
tive FEA simulation and experiment after open-hole tensile tests
in [90/45/0/ — 45]g Beech veneer laminates.

ors were selected for the modulus E; and the damage sat-
uration strain ¢}, see Figure 6. Ideally, the priors should
be informed by isolated experimental measurements. For
example, the longitudinal modulus E; could be indepen-
dently measured through tensile tests of uni-directional
wood veneers, and this data could inform the prior selec-
tion.

Irrespective of replacing some of these computational
techniques, the presented framework remains valid and
represents a transition from empricial modelling or deter-
minstic simulations to a series of computational methods
that enable the consideration of uncertainties in the me-
chanical behavior of wood veneer laminates. Future work
will focus on applying these techniques to large-scale auto-
motive components, with the goal of designing sustainable
wooden structural parts that could incrementally replace
traditional metallic parts.

6 — CONCLUSION

This study presents a combined experimental-numerical
framework to incorporate uncertainty into Finite Element
Analysis (FEA) of progressive damage evolution in Beech
veneer laminates subjected to compact tension tests. The
key requirements include a sufficiently large experimen-
tal dataset and a fast prediction method in order to apply
Markov Chain Monte Carlo. It is demonstrated that a ma-
chine learning surrogate model, based on FEA-simulated
data and Gaussian Process Regression, provides the neces-
sary speed-up to estimate the distribution of sensitive FEA
input parameters. Validation against open-hole tension
tests indicates that FEA simulations, using the obtained
input distributions, are capable of predicting the mean val-
ues and standard deviations of open-hole tension strength.
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