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ABSTRACT: In order to verify the effect of thread shape on the withdrawal performances of Lagscrewbolt (LSB) 
inserted into perpendicular to the grain, conducted withdrawal tests using LSBs with different thread diameter and 

pitch. The withdrawal capacity and initial stiffness were higher for larger thread diameters or smaller thread pitches, and 
increased almost proportionally to the insertion length. Compression area and shear area were adapted as the evaluation 
methods used for screwed fastener, and it was evaluated the withdrawal capacity and initial stiffness per each area. The 
5%-tile compression strength, which is the withdrawal yield load divided by the compression area, was almost equal to 
the criterion strength, and it is considered that the first yielding on withdrawal behavior is due to the yielding caused by 
the compression of the timber dovetailing the screw threads. The shear strength, which is the withdrawal capacity divided 
by the shear area, becomes lower as the thread pitch increases, and it is considered that the shear strength also changes 
because the shear performance when loaded radially varies with the height of the shear area of timber dovetailing with 
the screw threads.
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1 – INTRODUCTION

Lagscrewbolt (LSB) is a screwed fastener that transfer 
forces through its withdrawal resistance. It is used in 
beam-column joints and column base joints in timber 
semi-rigid frame structure mainly using glulam. Design 
rules of the withdrawal performances such as the 
withdrawal capacity and initial stiffness are provided by 
some design guidelines, e.g. [1,2]. These design rules 
were theorized based on the Volkersen model [3-5]. The 
effect of the thread shape of LSB on the withdrawal 
performances had not sufficiently verified, therefore the 
model and guidelines present estimated equations 
calculated from experimental results. However, it has 
been reported that the volkersen model tends to 
underestimate withdrawal performances for larger 
insertion length in some withdrawal tests of LSB under 
various conditions [6-9]. In order to simplify and 
streamlining the design rules, the method that can estimate 
the withdrawal performances from parameters such as 
thread shape and wood species is needed.

The withdrawal performances of LSBs inserted into 
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parallel to the grain was studied using finite element 
analysis [10-12]. In these references, only one type of 
thread shape was used, the effects of thread diameter and 
pitch are not taken into account. Therefore, the 
withdrawal model [13] was proposed to calculate the 
withdrawal capacity of LSB inserted into parallel to the 
grain using the thread diameter and pitch and the shear 
strength of timber applying the withdrawal model of 
tapping insert [14] and the references [10-12]. However, 
although LSBs are inserted into perpendicular to the grain 
of the column timbers in the column-beam joints, there is 
a lack of studies on their withdrawal performances. The 
withdrawal behavior of LSB inserted into perpendicular 
to the grain has been reported to exhibit deformation 
behavior with toughness caused by a combination of 
bending and compression deformation of timber [3,5,15].

In this study, it was conducted withdrawal tests of LSBs 
inserted into perpendicular to the grain of glulam by 
varying the thread diameter and pitch, and insertion length 
in order to verify the effects of thread shape and insertion 
conditions on the withdrawal performances of LSBs 
inserted into perpendicular to the grain.
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2 –MATERIALS AND METHODS

Fig. 1 shows the experimental jig and the glulam setup. 
Table 1 shows the list of specimens. The glulams 
standardized in Japan Agricultural Standard (JAS 1152) 
made of Japanese ceder (Cryptomeria japonica, Jc) class 
E65-F255 and Scots pine : European Red pine in 
Japanese (Pinus sylvestris, Sp) class E95-F315 were used. 
Four heights of glulams (120, 180, 240, 300mm) were 
used, and LSBs were penetrated the glulams, so that the 
height of the glulams and effective insertion length (L)
were the same. The reaction force was restrained by the 
bolts and steel plate or channel on each side. The length 
of glulam and the position of support steel plates or 
channels were adjusted assuming that the stress would 
spread at 45°. In the tests with insertion length of L120, 
nine different thread shapes (three thread diameters (D): 
21, 23, 25mm, three thread pitch (P): 6, 8, 10mm) were 
used. In the tests with insertion length of L180-300, four 
different thread shapes (two thread diameters (D): 21, 
25mm, two thread pitch (P): 6, 10mm) were used. The 
number of specimens was 3-6 of each condition.

The lead holes diameters of LSBs were 2mm smaller than 
thread diameters, and the LSBs were inserted into the 
glulams with a wrench. The loading method was
monotonic tension using the material testing machine at 
loading speed of 1mm/min. Four displacement 
transducer were installed in the glulams, and the relative 
displacement measured between the tranceducer and 
fixture fixing the LSBs was used as the withdrawal 
displacement.

3 – RESULTS AND DISSCUSSIONS

3.1 FAILURE MODE

The failure mode of almost specimens was withdrawal 
failure accompanied by rising up of the surface fibers, 
shown in Fig. 3. Although there was no clear trend in the 
extant of rising up of the fibers, some specimens of Jc-
D25-P6 series showed cracking across the entire surface 
lamina, as shown in Fig.4.

Fig. 5 and 6 show the cross-sectional views of TR and LR 
plane of the glulam where LSB was inserted. In TR plane,
the timber dovetailing the screw threads was subjected to 
compression and the fibers shifted in the shear plane, 
resulting in rolling-shear-like deformations. In LR plane,
in addition to compression, the fibers bent and cracked in 
tension. There was no difference in these failure modes 
depending on the thread shapes.

Figure 1. Loading configuration and specimen

Figure 2. Thread shape of LSB

Table 1: Test conditions and number of specimens
wood
species
(w.s.)

thread shape insertion length
L [mm]

diameter
D [mm]

pitch
P [mm] 120 180 240 300

Japanese
cedar
(Jc)

21
6 6 6 5 3
8 6 - - -

10 6 6 6 4

23
6 6 - - -
8 6 - - -

10 6 - - -

25
6 6 5 6 4
8 6 - - -

10 6 6 6 4

Scots
pine
(Sp)

21
6 6 6 6 4
8 6 - - -

10 6 6 6 4

23
6 6 - - -
8 6 - - -

10 6 - - -

25
6 6 6 6 4
8 6 - - -

10 6 6 6 4

Figure 3. Withdrawal failure
with rising up of the surface fibers

Figure 4. Cracking of 
surface lamina

Figure 5. Section of TR face Figure 6. Section of LR face
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3.2 LOAD-DISPLACEMENT RELATION

Fig. 7-9 show typical load-displacement relationships. In 
almost all specimens, the stiffness decreased once at 
about 0.3 times the maximum withdrawal capacity (Pmax), 
and then the load increased to Pmax with a gradual 
decrease in stiffness, followed by a gradual decrease in 
load up to 0.8Pmax. In subsequent evaluations, the initial 
slope of the visual inspection was used as the withdrawal 
initial stiffness (K: stiffness) in order to correctly evaluate 
the initial stiffness. It was confirmed that the larger the 
thread diameter or the smaller the thread pitch, the higher 
the capacity and stiffness. Similarly, it was also 
confirmed that the longer the insertion length, the higher 
the capacity and stiffness. The amount of withdrawal 
displacement at Pmax was about half of the thread pitch, 
regardless of thread diameter, insertion length, or wood 
species.

3.3 WITHDRAWAL PERFORMANCE

Figs. 10, 11 show Pmax, withdrawal yield capacity (Py), 
and K in the L120 series. For most of the series, Pmax, Py,

and K are higher with larger thread diameters and smaller 
thread pitches, but Pmax was not so high for Jc-D25-P6 
series, and the difference in K by thread diameter was 
slightly smaller. Figs. 12, 13 show the relationships 
between Pmax, Py, K and insertion length for each thread 
shapes in the L180-300 series. The longer the insertion 
length, the higher the withdrawal capacity and stiffness, 
with a gradually decreasing increase in Japanese cedar. 
In Scots pine, only the increase in K at D25 gradually 
decreases, but Pmax, Py, and K at D21 increase 
proportionally up to L300.

The glulams used for L120 and L180-300 series were 
manufactured in different lots, and there were significant 
differences in their densities. Fig. 14 shows the 
relationship between Pmax and oven-dry density for each 
insertion length. The density of Japanese cedar shows
higher values for L180, 240 compared to L120, which 
may be one of the reasons for the higher increase in Pmax

from L120 to L240. Therefore, it is likely that Pmax and 
Py increase proportionally in Japanese cedar, as well as 
in Scots pine, up to L300.
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Figure 12. Withdrawal capacity-Insertion length relationships

Figure 13. Withdrawal stiffness-Insertion length relationships
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3.4 EFFECT OF THREAD SHAPE

In order to examine the effect of thread shape, the 
compressive area (Ac) and shear area (As) used in 
estimating the bearing capacity of screwed fastener
[13,14] were used to evaluate the strength and stiffness. 
The calculation methods for Ac and As are shown in Figs. 
15, 16 and (1)-(4):

tan-1 P D

X D sin

As D D P / 2

Ac XY L D d sin cos

It has been reported that when a screwed fastener inserted 
into perpendicular to the grain is withdrawal from timber, 
it yields due to the screw thread penetration into timber 
[15]. Therefore, the compression strength calculated by 
dividing Py by Ac is shown in Figs. 17, 18. Similarly, the 
compression stiffness calculated by dividing K by Ac is 
shown in Figs. 19, 20. These were almost the same for 

Jc-L120 and Sp-L180-300 regardless of thread shape, 
with 5%-tile of approximately 5 N/mm2, which is almost 
the same as the reference strengths (Jc: 4.8 N/mm2, Sp: 
5.1 N/mm2) [16]. The values of Jc-L180-300 and Sp-
L120 were generally higher than the reference strengths. 
However, the higher density of the glulams, especially 
for Japanese cedar series, may be the reason for this. The 
compression stiffness was almost constant for each 
species in L120, but tended to be higher with larger 
thread diameter and pitch in L180-300.

The withdrawal failure of LSB inserted into parallel to 
the grain has been reported to result from shear failure of 
timber [4,10-12,14]. While the withdrawal failure of LSB 
inserted into perpendicular to the grain is regarded as a 
combination of bending deformation of the fibers 
dovetailing with the screw threads and tensile crack of 
timber near the screw threads [5]. The thread pitch 
changes the number of screw threads that dovetailing
timber per insertion length, and it has been reported that 
the height of the shear plane of the dovetailing timber 
(shear height), and that the greater the shear height, the 
lower the shear strength in transverse fiber shear behavior 
[17,18]. This is because the shear strength per shear area 
is calculated to be low because tensile crack occurs 
regardless of shear height, and the larger the thread pitch, 
the smaller the tensile area (=compression area). 
Therefore, we calculated pseudo shear strength by 
dividing Pmax by As, as in the previous method [13], to 
examine the effect of shear height and other factors on 
shear strength. Figs. 21, 22 show the shear strength. The 
shear strength tended to be lower under conditions of 
larger thread pitch, i.e., larger shear height, as in [17,18]. 
The difference in shear strength by the thread diameter 
was slightly observed for Jc-D21-P6 at L180-300, but 
otherwise the shear strength values were similar for each 
species and thread pitch.

Figure 14. Withdrawal capacity-Insertion length relationships
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Figure 16. Dovetailing width for compression area
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From these considerations, it was considered that the 
withdrawal failure of LSB inserted into perpendicular to 
the grain is caused by a combination of yielding due to 
transverse compression of timber dovetailing the screw 
threads and failure due to transverse shear with bending 
and tension. The shape of timber dovetailing the screw 
threads differs depending on the thread shape of the LSB, 
and by examining the difference in transverse shear 

strength due to the shear height, it was considered that a 
withdrawal model for LSB inserted into perpendicular to 
the grain can be proposed.

4 – CONCLUSIONS

Withdrawal tests of LSBs inserted into perpendicular to 
the grain with different thread shapes to investigate the 

Figure 17. Compression strength compared with each thread shape Figure 18. Compression strength compared with each insertion length

Figure 19. Compression stiffness compared with each thread shape Figure 20. Compression stiffness compared with each insertion length

Figure 21. Shear strength compared with each thread shape Figure 22. Shear strength compared fwith each insertion length
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effect of thread diameters, pitches and insertion length on 
withdrawal performance were conducted.

Compression area and shear area were applied to the 
withdrawal capacity and stiffness obtained from the tests 
as the evaluation method used for screwed fasteners, and 
the withdrawal capacity and stiffness per each area were 
calculated and evaluated.

1. The larger the thread diameter or the smaller the thread
pitch, the higher the values of withdrawal capacity and
stiffness. The larger the insertion length, the higher the
values of capacity and stiffness. The trend of deformation
depends on the thread pitches regardless of the thread
diameter or insertion depth, and the maximum
withdrawal capacity was reached when the withdrawal
deformation reached about half of the thread pitch.

2. The compressive strength and stiffness, calculated by
dividing the withdrawal yield capacity and stiffness by
the compression area, were almost constant regardless of
the thread shape and the insertion length. The 5%-fractile
of the compression strength almost coincides with the
reference strength, and we believe that the initial yielding
at withdrawal behavior is due to the yielding caused by
compression of timber dovetailing the screw threads.

3. The shear strength, calculated by dividing the
maximum withdrawal capacity by the shear area, was
lower the larger the thread pitch, and the shear strength at
withdrawal behavior also changes because the transverse
shear performance of the fiber varies depending on the
shear height of timber dovetailing the screw threads.

We would like to consider the relationship between 
transverse shear performance and shear height, and the 
behavior of tension, and to a withdrawal model of LSB 
inserted into perpendicular to the grain. 
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