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ABSTRACT: The paper deals with the discrete optimization of timber structures. Mixed-integer nonlinear programming 
is applied. For each structure, a superstructure of various structural alternatives and an optimization model are developed.
The cost or mass objective function of the structure is subjected to the constraints of inner forces, stresses and 
dimensioning. The defined problem is solved with a modified outer-approximation/equality-relaxation algorithm. Cost 
optimizations of a timber-concrete composite floor system, a timber floor joist and a timber-steel hall structure are briefly 
presented here. For given input data and unit prices, the minimal self-manufacturing costs of the structures are determined 
together with the optimal number of structural elements and their sizes. MINLP proves to be a valuable method for the 
optimization of timber structures. Structural optimization is suitable for teaching at universities as well as for use in 
research and engineering practice.
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1 – INTRODUCTION

The optimization of timber structures is an ever-increasing 
challenge, as it enables the calculation of the most 
favourable (economical) structural design in terms of 
material, energy and labour consumption. Minimizing the 
production costs of structures reduces the purchase price 
for the customer and increases the manufacturer`s 
competitiveness on the market, while also reducing wood 
consumption and logging, which is important for 
sustainable development. 

Recent advances in the optimization of timber structures 
have focused on improving structural efficiency, material 
usage and sustainability. Over the past five years, various 
optimization techniques have been applied to different 
types of timber structures. For example, Mayencourt and 
Mueller [1] have researched the optimization of the 
structure of cross-laminated timber panels, focusing on the 
reduction of material consumption through a nonlinear 
programming approach using the fmincon solver in Matlab. 
Pech et al. [2] investigated the optimization of glued 
laminated timber beams employing metaheuristic 
algorithms to achieve efficiency. Garcia and Thompson [3] 
utilized parametric design in conjunction with gradient-
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based optimization to enhance the seismic performance of 
timber frame buildings. Lee and Kim [4] applied topology 
optimization to cross-laminated timber (CLT) panels and 
achieved significant weight reduction without 
compromising structural integrity. Santos et al. [5] aimed 
at cost optimization for cross-insulated timber panels and 
also used the fmincon solver in Matlab for their analysis. 
Zhang et al. [6] optimized glulam beam structures using 
genetic algorithms to improve load-bearing capacity while 
minimizing material consumption. Kravanja and Žula [7] 
optimized a single-story timber building structure using 
mixed-integer nonlinear programming, MINLP. Similarly, 
Jelušič and Kravanja [8] optimized timber floor joists 
employing a multi-parametric MINLP optimization. In 
another study, Nesheim et al. [9] investigated both cost and 
ECO2 optimization of timber floor components for 
adaptable buildings applying a mixed-integer sequential 
linearization method for the optimization process. In 
addition, Müller et al. [10] investigated multi-objective 
optimization for timber truss systems, using particle swarm 
optimization to balance cost efficiency and structural 
performance. These studies highlight the growing trend of 
integrating advanced computational methods into the 
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design of timber structures, leading to more efficient, 
sustainable and resilient structural solutions.

This paper focuses on the discrete optimization of timber 
structures using MINLP. MINLP is a versatile method that 
can handle both continuous and discrete optimization 
variables simultaneously. Continuous variables are used to 
optimize continuous dimensions, stresses, masses, or costs 
of structures, while discrete variables determine the 
optimal number of structural elements, material grades and 
standard/discrete sizes. By using MINLP optimization, we 
thus obtain realistic optimal designs of structures that are 
directly applicable in practice. The optimization of three 
different timber structures is carried out and briefly 
explained.

This paper focuses on the discrete optimization of timber 
structures using MINLP. MINLP is a versatile method that 
can handle both continuous and discrete optimization 
variables simultaneously. Continuous variables are used to 
optimize continuous dimensions, stresses, masses, or costs
of structures, while discrete variables determine the 
optimal number of structural elements, material grades and 
standard/discrete sizes. By using MINLP optimization, we 
thus obtain realistic optimal designs of structures that are 
directly applicable in practice.

The optimization of three different timber structures is 
carried out and briefly explained: a timber-concrete 
composite floor system, a timber floor joist and a timber-
steel hall structure, see Fig. 1.

2 – BACKGROUND –M I N L P 

However, let us first provide some basics of the MINLP 
optimization approach, including mathematical 
formulation, algorithms, solvers, and handling of 
nonconvexities to obtain near-global solutions.

Since the optimization of technical systems, including 
timber structures, involves continuous and discrete 
decisions, it mathematically gives rise to a mixed-integer 
description involving continuous variables for continuous 
decisions, denoted by vector x, defined over the set X of 
real numbers of dimensionality n (Rn), each given by the 
corresponding lower and upper bounds, and integer 
variables for discrete decisions, usually represented by 
binary variables and denoted by vector y, from a set Y of 
0-1 numbers of dimensionality m ({0,1}m), which take

values of 1 for a realized decision and 0 otherwise. The 
objective of optimization is usually to maximize or 
minimize a single selected technical performance measure 
(weight, energy consumption, etc.) or economic measure 
(profit, cost). The objective is represented by an objective 
function, typically consisting of fixed charges associated 
to the selection of alternatives cT and (non)linear 
continuous charges f(x) and subject to mixed-integer 
nonlinear equality and inequality constraints, denoted by 
h(x, y) and g(x, y), respectively, as well as mixed-integer 
linear logical constraints, which together determine the 
(MINLP) problem. It represents a mathematical model 
defined over a given technical superstructure of 
topological alternatives.

min Z = cTy + f (x)
s.t

h(x, y) = 0

g(x, y) 0        (MINLP)

Cy + Dx b

x X = {x | x Rn; xlo x xup}

y Y = {0, 1}m

Note that a problem should possess positive degrees of 
freedom to perform its optimization. The role of 
optimization is then to identify an optimal solution within 
the feasible space by selecting the best set of constitutive 
alternatives (y**) and their continuous parameters (x**), 
at which the given optimization criterion obtains its best 
realization. In this way, simultaneous topology (structure) 
and parameter (e.g., dimensions) optimization is 
performed. As the number of possible combinations 
increases exponentially with the number of alternatives, 
the combinatorial complexity of MINLP problems can be 
very high, requiring the use of efficient algorithms. Most 
of these algorithms rely on decomposition, where discrete 
decisions are performed using mixed-integer algorithms 
and continuous decisions by Newtonian algorithms. 
Typical algorithms include Generalized Benders 
Decomposition by Geoffrion [11], Outer-Approximation 
(OA) algorithm by Duran and Grossmann [12], Sequential 
Linear Discrete Programming method by Olsen and 
Vanderplaats [13] and Bremicker et al. [14], Extended 
Cutting-Plane algorithm by Westerlund and Petterson
[15], and the LP/NLP Branch-and-Bound algorithm by 
Quesada and Grossmann [16], with OA being the most

Figure 1. Three timber structures: a) a timber-concrete composite floor, b) a timber floor joist, and c) a timber-steel hall structure.

1849 https://doi.org/10.52202/080513-0226



efficient for solving highly nonlinear problems with dense 
matrices. These algorithms, however, are based on local 
methods, guaranteeing global optimality only for convex 
problems. On the other hand, global algorithms can only 
solve smaller and sometimes medium-sized MINLP 
problems to a global optimum. As alternatives can also be 
represented as disjunctions, an alternative way of problem 
formulation is Generalized Disjunctive Programming 
(GDP), which is increasingly gaining more and more 
attention [17]. Only the OA algorithm and its extension, 
the Modified Outer-Approximation/Equality Relaxation 
algorithm [18], are briefly explained, as the latter was used 
in this discrete optimization of timber structures. 

The OA algorithm consists of a sequence of iterative 
executions of a mixed-integer linear programming (MILP) 
master problem and nonlinear programming (NLP) 
subproblems. The role of the MILP master problem, a 
linear approximation of the whole problem, is to perform 
discrete optimization, and the role of NLP subproblems is 
to perform continuous parameter optimization for a 
subsystem identified in the previous MILP master 
problem. At each main MINLP iteration, new 
linearizations derived from the NLP subproblem’s 
solution point are added to the MILP master problem, 
which thus becomes more and more exact. When the 
direction of optimization is maximization, the MILP 
master problem provides an upper bound, and the NLP 
subproblems provide a lower bound to the MINLP 
problem. For convex problems, the search terminates 
when the bounds converge, while for nonconvex 
problems, it terminates when there is no improvement of 
the NLP solution over a predefined number of main 
MINLP iterations.

Since the presence of nonconvexities may cut off large 
portions of the feasible space, the globality of the solutions 
can be seriously compromised. As optimization models in 
mechanics are typically large scale, nonconvex, and with 
dense matrices, global optimization solvers cannot solve 
them. To circumvent the problem, the following non-
structured convexifications, implemented in the Modified 
OA algorithm, were applied:

Deactivation of linearizations to make them
redundant when the corresponding alternatives
are not selected.
Decomposition of the objective function into
groups of terms and deactivation of their
linearization.
Use of a penalty function to shift linearizations,
thus opening the feasible space.
Convexity testing.
Either removal of linearizations that cut off the
feasible space or performing some other
validation of linearization.

The Modified OA algorithm was implemented in the 
MIPSYN synthesizer [19]. Additionally, for large-size 
problems with a large number of discrete variables 
associated with individual structural elements, the Linked 
Multilevel Hierarchical Strategy (LMHS) [20] can be 
applied to obtain a near-global solution for nonconvex 
problems. 

3 – OPTIMIZATION MODELS

The MINLP optimization process is divided into three 
main steps. First, a timber MINLP superstructure is 
generated with a variety of different topological, material 
and dimensional discrete alternatives. The combination of 
these alternatives results in a variety of different structural 
design alternatives, one of which is the optimal one. A 
MINLP model is then formulated to encapsulate the 
optimization problem. Finally, an optimal solution is 
searched in the direction of the cost or mass objective 
function, taking into account the structural constraints
(inner forces, stresses, deflections and dimensioning 
equations). 

The effectiveness of the proposed MINLP approach is 
demonstrated by its application to various optimization 
tasks, such as the cost optimization of a timber-concrete 
composite floor system, a timber floor joist and a timber-
steel hall structure. MINLP optimization models were
developed for the optimization of these structures. The 
dimensioning   constraints  of  the  timber structures    are

Figure 2. A timber-concrete composite floor system.
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developed for the optimization of these structures. The 
dimensioning constraints of the timber structures are 
defined according to the Eurocode specifications [21-23].
The models were modelled in GAMS (General algebraic 
Modelling System) [24].

3.1 TIMBER-CONCRETE COMPOSITE 
FLOOR SYSTEM

Timber-concrete composite floors are constructed from 
parallel timber beams in combination with a reinforced 
concrete slab, connected by shear connectors, see Fig. 2.
To facilitate the construction of the concrete slab, 
permanent formwork panels are placed on top of the timber 
beams. To ensure a shear-resistant connection, various 
types of fasteners such as screws, anchor bolts or steel 
dowels can be used. In this structural system, the concrete 
slab primarily resists compressive forces, while the timber 
beams resist tensile and bending stresses. This flooring 
system is used to improve and strengthen existing timber 
floors in residential and office buildings as well as in new 
buildings.

To enhance the cost efficiency of timber-concrete 
composite floors, an optimization process was carried out. 
A mixed-integer nonlinear programming (MINLP) 
approach was implemented, which led to the development 
of the optimization model TCCF (timber-concrete 
composite floor). Since the model was designed in a 
general way, it allows optimization under various 
conditions, including different spans, applied loads and 
economic factors. The model includes input data 
(constants), variables and an economic objective function,
which is subjected to equality and inequality constraints.

Input data: The input data include the span L of the floor 
beam, the vertical load q, the thickness of the formwork 
slab, the material density (steel and concrete), the 
properties of the fasteners (tensile strength, diameter and 
spacing), the amount of steel reinforcement, the materials 
and power unit prices, the labour cost, etc. 

Variables: The variables within the model take into 
account the production costs of the composite structure, the 

total mass of the structure, the thickness of the concrete 
slab d, the timber beam width b, the beam height h, floor 
beam spacing e, the bending strength of the timber, the 
compressive strength of the concrete, etc.

Objective function: The objective function includes the 
self-manufacturing costs of the timber-concrete structure 
with detailed material, power and labor cost items. The 
objective function is subjected to the (in)equality 
constraints.

(In)equality constraints: These constraints limit the 
effective flange width, the design compressive and tensile 
stresses in the concrete, the design shear and bending 
stresses in the timber, the instantaneous and net deflections 
of the structure, while the design strength of the fasteners
must be sufficient. Logical constraints used to calculate the 
standard values for dimensions and materials/strengths are 
also included. For more information on timber-concrete 
composite floors, see [25].

3.2 TIMBER FLOOR JOIST

Timber floor joists are composed of parallel timber beams 
combined with structural sheathing and connected by shear 
connectors. In order to achieve larger spans, the traditional 
sawn timber beams are here replaced by glulam beams. The 
aim is to identify the optimal costs for two different timber 
floor systems:

Consisting solely of glulam beams in combination
with sheathing, see Fig. 3.
With glulam beams, secondary sawn timber
beams and sheathing, see Fig. 4.

In order to achieve cost optimization of timber joist floors, 
a MINLP optimization model called TIMBFJ (timber floor 
joists) was created. This optimization model includes input 
data (constants), variables, a cost objective function of the 
structure, structural analysis/dimensioning constraints, and 
logical constraints. 

Input data: Primary input data include the span of the structure 
L, the imposed load q, the material properties (moduli of 
elasticity, characteristic strengths, specific weights), various 
factors ( amplification factor, deformation factor, loading 

Figure 3. A timber floor joist with glulam beams and sheathing.
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Figure 4. A timber floor joist with glulam beams, secondary sawn timber beams and sheathing.

sharing factor, partial factors for actions and material 
properties, composite actions, etc.) and cost information (unit
prices for timber board, sawn timber, glulam, impregnation, 
etc.). 

Variables: Continuous variables include aspects such as the 
total costs of production, geometric dimensions (widths and 
heights of main and secondary beams, spacings between 
beams, thickness of the timber board), cross-sectional 
properties (equivalent bending stiffness of the slab, equivalent 
bending stiffness of the joist, effective stiffness of the timber 
floor), stress levels (design bending and shear strengths, design 
bending and shear stresses), deflections (final deflections, 
instantaneous deflections, vertical deflections due to 
concentrated static force 1 kN) and masses. Discrete variables 
are used here for the calculation of standard sizes and bending 
strengths.

Objective function: The objective function of the self-
manufacturing costs of the timber floor joists is determined, 
which includes the costs for the boards, the floorboard placing, 
the timber, the timber impregnation, the glued laminated 
timber beams and the glulam impregnation. 

(In)equality constraints: The conditions for the ultimate limit 
state require that the maximum design bending stress in a 
timber beam does not exceed the design bending strength of 
the timber and that the design shear stress remains within the 
allowable shear strength of the timber. In addition, the design 
bending stress and shear stress in timber boards must be lower 
than their respective design strengths. For the serviceability 
limit state, both the instantaneous and final deflections of the 
timber beams and the deflection of the timber boards restrained 
between the beams must be checked. In addition, the vertical 
deflection due to concentrated static loads must be checked 
within certain limits. The fundamental vibration frequency of 
rectangular residential floors is also limited, and the unit 
impulse velocity of the floor must not exceed the allowable 
floor velocity. Logical constraints define the standard 
dimensions and strengths. For more information on the 
optimization model of the timber floor joist, see [26].

3.3 TIMBER-STEEL HALL STRUCTURE

The design envisages a single-storey hall structure made of 
timber and steel, using equal timber portal frames connected to 
each other with steel purlins and rails. The primary frames are 

constructed from a glued laminated timber with rectangular 
cross-section, while the purlins and rails are made from hot-
rolled IPE steel profiles. In addition, HEA steel sections are 
used for the façade columns on the front and rear façades, as 
can be seen in Fig. 5.

The structural analysis takes into account the swaying 
behaviour of the timber frame. The longitudinal stability and 
the stability of the roof structure are ensured by an integrated 
bracing system. The columns of the portal frame are supported 
on square concrete pad foundations. The structure is designed 
to withstand uniform vertical loads, such as snow, and 
concentrated horizontal loads from the wind. The optimization 
model, referred to as THS (timber hall structure), comprises 
various components: input data, design variables, a cost 
minimization objective function, and both equality and 
inequality constraints.

Input data: They include the overall dimensions of the building 
(length, height and span), material strengths and properties, 
cross-section characteristics, safety factors for loads and 
material properties, and unit prices for timber, steel and 
concrete.

Variables: The model includes both continuous and discrete 
(binary) variables. Key variables include load distributions, 
structural resistances, stress levels, deflections, dimensions of 
glulam cross-sections, steel I-sections, number of structural 
elements (frames, purlins and rails), and costs and masses for 
individual components and the overall structure.

Objective function: The main objective is to minimize material 
costs, i.e. the costs of glulam, structural and reinforcing steel 
and concrete.

(In)equality constraints: For glulam frames, the model 
evaluates axial compressive strength, bending moments, shear 
forces and combined conditions. Stability checks include 
resistance to compress buckling, lateral-torsional stability and 
the interaction between buckling and torsional effects. Critical 
stresses are evaluated in the areas of the apex and column-
beam zones, focusing on bending stresses, tensile stresses 
perpendicular to the grain and combined shear-tensile stresses. 
The steel components are analysed for their axial, shear and 
bending resistances, as well as compression buckling, lateral-
torsional buckling and the combined effects. The load-bearing 
capacity of the soil under concrete foundations is also verified. 
Both the vertical deflections of the timber and steel elements 
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and the horizontal deflections of the timber frames are limited. 
Logical constraints are implemented to determine the optimal 
number of frames, purlins and rails as well as the most efficient 
sizes for glulam sections, steel I-profiles, and foundation 
dimensions. For more information on the timber-steel hall 
structure, see [27].

4 – OPTIMIZATION

Given the complex, non-convex and highly non-linear 
nature of the optimization problems, the modified outer-
approximation/equality-relaxation algorithm is applied.
The user-friendly software MIPSYN [19] is used. 
MIPSYN integrates a variety of advanced optimization 
methods. Among these, the most prominent are the 
modified OA/ER algorithm [18] and the multilevel LMHS 
strategy [20]. GAMS/CONOPT [28], a tool based on the 
generalized reduced gradient method, was utilized to solve 
the NLP subproblems, while GAMS/CPLEX [29], which 
uses the branch-and-bound algorithm, dealt with the main 
MILP problems.

The multilevel LMHS strategy, which was applied to 
accelerate the convergence of the OA/ER algorithm, 
worked in three phases:

The optimization process starts with a continuous
NLP optimization of the structure, where all
variables are treated as continuous in the
initialization phase. This step provides a good
initial solution and develops an efficient global
linear approximation of the superstructure, which
is then used for the subsequent optimization
phases.
In the second phase, the process moves on to
discrete MINLP topology and material

optimization. An iterative sequence of NLP and 
MILP solutions is performed until the suboptimal 
solution is reached. The global linear 
approximation is additionally enriched.
In the third phase, a comprehensive discrete
optimization is performed, focusing on topology,
material selection, standard dimensions and
rounded dimensions simultaneously. This process
is continued iteratively until the optimal solution
is achieved.

For the given input data, and the material, power and labour 
unit prices, the task of the optimizations is to find the 
minimal production costs and optimal designs for the 
considered three timber structures. 

A timber-concrete composite floor with a span of 10 m, 
loaded with an imposed load of 2.0 kN/m2. The thickness 
of the formwork panel is 20 mm and the fasteners are 10 
mm in diameter at 150 mm spacings. The unit prices are as 
follows: timber (C24) 250 €/m3, timber impregnation 125
€/m3, concrete (C25/30) 85 €/m3, steel reinforcement 0.7
€/kg, floor-slab panels 10 €/m2 and shear fasteners 0.4
€/each;

A timber joist with a span of 10 m, also loaded with 2.0 
kN/m2. Two different systems are optimized: the system 
with only primary glulam beams and the system with 
primary glulam beams and secondary sawn timber beams. 
The unit prices are set as follows: timber (C24) 250 €/m3,
glulam 500 €/m3, timber impregnation 125 €/m3 and timber 
boards 21 €/m2;

A 55 m long, 15.5 m wide and 5.0 m high timber-steel hall 
structure. The hall is loaded with a snow load of 0.8 kN/m2

and a horizontal wind load of 0.6 kN/m2. The unit prices 

Figure 5. The optimal structural topology of the timber-steel hall.
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are €800/m3 for glulam GL24h, €1.50/kg for steel S 355 
and €110/m3 for concrete C25/30.

5 – RESULTS

The superstructure of the timber-concrete composite floor 
system consists of 16800 different structural variants with 
different sizes and strengths (one of which is the optimal 
one). The calculation took about five minutes of working 
time. The calculated optimal self-manufacturing costs of 
the considered timber-concrete composite floor are 52.26 
€/m2 with the following optimal dimensions: the concrete 
slab thickness d is 40 mm, the width of the timber beam b
is 120 mm, the height of the timber beam h is 260 mm and 
the spacing between the beams e is 600 mm (see Fig. 2).

The superstructure of the first timber joist system, with 
primary glulam beams only, comprises 6912 different 
structural alternatives. The calculated production costs 
reached 63.20 €/m2. About five minutes were needed for 
the calculation. The calculated optimal dimensions are: the 
timber board thickness d is 20 mm, the width of the glulam
beam b is 60 mm, the height h is 700 mm and the spacing 
between the beams e is 900 mm (see Fig. 3).

The superstructure of the second timber joist system, with 
primary glulam beams and secondary sawn timber beams, 
comprises 1.69917·108 different structural alternatives 
(one structure is the optimal one). The calculation took 
about five minutes. The calculated production costs 
reached 52.40 €/m2. This joist system is cheaper than the 
system with primary beams only. The calculated timber 
board thickness d is 20 mm, the upper (secondary) sawn
timber beams have the dimensions b 50 mm, h 140 mm and
e 900 mm, while the lower (primary) glulam beams have 
the dimensions: bpb 80 mm, hpb 960 mm and epb 3.10 m (see 
Fig. 4).

The superstructure of the timber-steel hall structure is very 
extensive as it includes 1.42757·1013 different structural 
alternatives (one of which is the optimal one). About 
fifteen minutes were needed for the optimization. The 
minimal material costs of the timber-steel hall structure 

resulted in 79.26 €/m2. The optimal number of 18 main 
portal frames, 10 purlins and 8 façade rails are obtained, 
see Fig. 5. All cross-sections are also calculated: IPE 80 for
purlins and rails, HEA 140 for façade columns, a 
rectangular glulam cross-section of 150/800 mm2 for the 
main frames and a square cross-section of 147.5/147.5 cm2

for the concrete pad foundations, see Fig. 6.

6 – CONCLUSION

This paper presents the MINLP optimization of timber 
structures. For this purpose, different optimization models 
for different timber structures are modelled and cost 
objective functions of structures are defined. In the paper, 
the optimizations of three different timber structures are 
presented to show the effectiveness of the proposed 
MINLP approach. The MINLP computer program 
MIPSYN is applied together with the modified OA/ER 
algorithm and the multilevel strategy to solve this task.

Based on this work, we will conduct future research on the
development of global optimization algorithms and 
strategies and further develop the optimization models for
arched timber hall structures and multi-storey timber 
buildings, including life cycle and carbon footprint 
concepts. MINLP optimization provides insight into mass 
or cost optimal solutions, optimal structural topologies, 
optimal material and standard cross-section choices, 
confirming MINLP as a valuable method for optimizing
timber structures. Structural optimization is useful for
teaching at universities and for use in research projects and 
daily engineering practice.
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