
 

 

 

PERFORMANCE BASED DESIGN METHOD FOR TIMBER UNIT LOAD-
BEARING WALL COMPOSED OF CURVED MEMBERS CONSIDERING 
GEOMETRIC NONLINEARITY AND PERFORMANCE OF JOINTS 

Shion KUBOTA1, Ayumu YASUI2, Shinta YOSHITOMI3  

ABSTRACT: This study proposes a load-bearing wall system composed of curved wooden member units, allowing 
designers to freely control stiffness and strength. This system allows for independent control of stiffness and strength by 
adjusting the unit size, sectional dimensions, or curvature. In addition, a performance-based design method is proposed 
by solving an inverse problem that enables to change the appearance without affecting the performance. This system can 
be used as a load-bearing wall for various types of structures, such as old traditional wooden buildings with low stiffness 
and strength but high deformation performance. A deatailed model is proposed to estimate the stiffness and strength of 
the unit system by concidering geometric nonlinearity of curved member and the performance of joints. The validity of 
the proposed method is examined by comparing experimental results with analytical results. 

KEYWORDS: load-bearing wall, inverse problem, performance design, curved member

1 – INTRODUCTION 

In Japan, traditional wooden houses are commonly 
reinforced with seismic elements such as braces and load-
bearing walls. However, in timber structures with high 
deformation capacity, i.e. Japanese wooden houses, 
installing high-stiffness braces can sometimes cause 
damage to the joints. This study proposed a new load-
bearing wall composed of curved members, which not 
only improve the appearance but also enable the designers 
to independently control its structural performance and 
appearance. 

Previous research [1] proposed a load-bearing wall system 
composed of curved member units, enabling separate 
control of structural performance and appearance (Fig. 1). 

This approach establishes a relationship between the shape 
of an individual curved member and its stiffness and 
strength, formulating an equation to evaluate the overall 
performance of a load-bearing wall composed of multiple 
units. By applying back-calculation using this equation, 
the method identifies the optimal member shape 
corresponding to a given stiffness and strength. However, 
previous studies have not concidered for geometric 
nonlinearity or joint details. Therefore, this study extends 
the previous method by concidering these factors. In order 
to examine the effect of these factors, numerical analysis 
results and experimental data are compared. The curved 
members are constructed from cutting plywood, and 
material tests are conducted to clarify its anisotropic 
properties. 
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Figure 1. Performance Analysis of Japanese Traditional Patterned Bearing Wall 
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2 –MATERIAL TESTS OF PLYWOOD

2.1 METHOD

Bending, compression, shear, and embedment tests are 
conducted on specimens cut from 12 mm thick Lauan 
plywood, with the fiber direction varying from 0° to 90° 
in 15° increments (Fig. 2). The fiber direction of the 
plywood surface is aligned with the axial force direction 
of the member at 0°, and three specimens are prepared for 
each fiber direction. The specimens for the bending, 
compression, shear, and embedment tests are made by 
bonding four sheets of plywood together using 
woodworking adhesive. In the bending test, a strain 
gauges are attached to the tensile side at the center of the 
specimens. In the embedment test, a semicircular groove 
with a diameter of 12 mm is hollowed out from the 
specimens, and a drift pin of the same diameter is
embedded into the groove.

Bending strength Fb [N/ 2], Young’s modulus Ew

[N/ 2], compressive strength Fc [N/ 2], tensile 
strength Ft [N/ 2], shear strength Fs [N/ 2], 
embedment strength Fe [N/ 2], and embedment 
stiffness Ke [N/ 2] were calculated using equation (1) 
to (6) based on load F [N], maximum load Fult [N], 
displacement [mm], strain , section modulus Z [mm3], 
cross-sectional area A [ 2], depth b [mm], and fastener 
diameter d [mm].

6 2 3b ult ultF dF Z dF Z (1)

w bE F (2)

c t ultF F F A (3)

3 4s ultF F A (4)

e ultF F bd (5)

eK F (6)

2.2 RESULTS

Fig. 3 represents the load-deformation relationships at 
fiber directions of 0°, 45°, and 90° for each test, with one 
example shown for clarity. Fig. 4 displays the averages 
of the various strengths, Young’s modulus, and 
embedment stiffness for each fiber direction. In the 
bending test at 0°, due to the setup cause the center of the
specimen to touch the ground before failure; therefore, 
the maximum load is estimated from its stiffness. The 
result of the first specimen in the compression test at 0°
is excluded from the average calculation of compressive 
strength because it breaks under less than half the load of
the other two specimens. The embedment strength was 
determined based on the maximum load measured within 
the displacement range of up to 8 mm, where the drift pin 
was adequately embedded.
In the bending, compression, tensile, and shear tests, the 
strength tends to be lowest when the fiber direction is at
45°. On the other hand, no such trend is observed in the 
embedment test. In particular, the embedment stiffness 
results are inconsistent even within the same fiber 
direction.

Figure 2. Material Test Method
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(a) Bending test (b) Compression test (c) Tensile test

(d) Shear test (e) Embedment test
Figure 3. Load-Deformation Curve of Material Test

(a) Bending strength (b) Young’s modulus (c) Compressive strength (d) Tensile strength

(e) Shear strength (f) Embedment strength (g) Embedment stiffness
Figure 4. Comparison of Structural Performance Based on Fiber Direction Differences

3 – DESIGN METHOD

3.1 GEOMETRIC NONLINEARITY OF 
CURVED MEMBER UNIT

As shown in Fig. 5, a curved member with a unit size a
[mm], radius r [mm], central angle [rad], effective 
width b [mm], and visible width h [mm] is assumed to be 
installed diagonally across a lattice and subjected to a 
horizontal load P [N]. The stresses acting on the curved 
members are defined as axial force N( ), shear force Q( ),
and bending moment M( ). Let 1) denote the initial 
deformation at the center of the curved member unit.

Fig. 6 shows that the curved member unit is divided into 
three components: steel plates, joint sections, and a 
plywood member. The initial deformation also can be 
expressed as the sum of the deformations due to steel
plate s(1), joint section r(1), and plywood w(1) as in 
equation (7). Deformations due to the steel plate and 

plywood are calculated using the virtual work method. 
The deformation due to joints are considered as 
deformation due to joint rotation.

(1) 1 1 1s r w (7)

To account for geometric nonlinearity, the additional 
moment generated by the initial deformation 1) is 
incorporated into the bending moment, and the 
deformation is recalculated iteratively. The deformation 
at the n-th step of the iterative calculation, n), can be 
expressed using equation (8). As a result, the deformation 
that includes the effects of geometric nonlinearity (∞) can 
be expressed using the coefficient c, as shown in equation
(9). A detailed derivation of the equations is presented in 
the appendix.

( ) (1)1 1n
n c c (8)

( ) ( ) (1)lim (1 )nn
c (9)
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Figure . Model of Curved Member Unit

Figure . Composition of Curved Members

3.2 CALCURATION OF FAILURE LOAD 
AND STIFFNESS

The horizontal loads at which edge stress due to axial 
force and bending moment ( /2) [N], tensile failure Pt

[N], shear failure Ps [N], and embedment failure Pe [N]
occur in the curved member are calculated, and the 
minimum among these loads is defined as the strength of 
the curved member. Each failure load is determined by 
equation (10) to (13). Bending failure is assumed to occur 
at the center of the member, while other failures are 
assumed to occur at joint 2. The stiffness of one unit k
[N/mm] is based on the equation from previous research 
[1] and expressed as follows equation (14). Let the
distance between joints be r12 [mm]. Detailed derivations 
of each equation are presented in the appendix.

2 2 2bF M Z N A (10)

2u yP b h d F N (11)

2 12uw sP b h d F M r (12)

2 12uj eP bdF M r (13)

3sin 3sin 2 cos
w wE AI

k
rI r A

(14)

3.3 INVERSE PROBLEM‐BACED DESIGN

Among the five parameters—effective width b, visible 
width h, central angle , stiffness K, and strength P—any 
three parameters are specified to determine the remaining 
two unknown parameters. In contrast, inverse problem
expressed by equation (15) is formulated by reversing the 

known and unknown quantities, allowing the effective 
width and visible width to be determined based on a 
given central angle, stiffness K , and strength P .

Find  ,   

Subject to  ,K P P

b h

K
(15)

In this case, the problem involves finding the unknown 
visible and effective widths that minimize the sum of 
squared errors e, expressed in equation (16), aligning the 
target stiffness and strength with the predicted values. 
Therefore, a numerical solution using a general 
minimization algorithm can be applied.

2 2

Find  ,   

To minimize = K

b h

e K K PP P
(16)

4 –EXPERIMENTAL TEST OF TIMBER 
CURVED MEMBER UNIT

4.1 METHOD

Fig. 7 shows the experimental setup. As shown in Table 
1 and Fig. 8, three specimens are created for the linear 
and curved members with central angles of 30°, 60°, and 
90°. These specimens are constructed by bonding four 12 
mm-thick sheets and one 5.5 mm-thick sheet of Lauan
plywood using woodworking adhesive. A steel plate is
inserted into a slit in the middle of the layer, and four 12
mm diameter drift pins are driven in to secure the
plywood. The steel plate has 13 mm diameter holes for
inserting drift pins. The specimens ware positioned
vertically, with pin connections at both ends.

(a) Linear (b) 30° (c) 60° (d) 90°
Figure . Experimental setup

Figure . Specimen Diagram
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Loading is applied in two cycles of positive and negative 
within the interlayer deformation angle range of 1/200 
rad to 1/15 rad (Table 2). This cycle is assumed to cause 
deformation in the members arranged along the diagonal 
of the lattice (Fig. 9).

4.2 RESULTS

The load-deformation curves for each specimen are 
shown in Fig. 10. The positive side experienced tension, 
while the negative side underwent compression. Due to a 
1 mm clearance in the holes of the steel plate, a slip of 
approximately 2 to 3 mm is observed near the origin on 
both the positive and negative sides; however, no 
additional slip occurred once the load began to take effect.
All three linear members fails at joint 2 during tension, 
which corresponds to the fact that their tensile strength is
lower than their compressive strength. In contrast, the 
failure modes of the curved members varied regardless of 
the central angle, displaying three patterns: bending 
failure at the center, failure at joint 2, and mixture of both 
pattern (Fig. 11).

Table 1: Timber Unit Settings

(a)
Linear

(b)
30°

(c)
60°

(d)
90°

Central angle [°] – 30 60 90

Unit size [mm] 300

Effective width [mm] 48

Visible width [mm] 48

Table 2: Loading Cycle

Interlayer deformation
angle [rad] 1/200 1/150 1/100 1/75 1/50 1/30 1/15

Displacement [mm] 1.06 1.41 2.12 2.83 4.24 7.07 14.14

(a) Unloaded state (b) Under commpression (c) Under tension
Figure 9. Deformation Diagram of Unit

(a) Linear (b) 30°

(c) 60° (d) 90°
Figure 10. Load-Deformation Curve of Unit Experiment

(a) Linear member (b) Curbe member pattern 1 (c) Curbe member pattern 2 (d) Curbe member pattern 3
Failure at joint 2 Bending failure at the center Failure at joint 2 Mixture of both pattern 1 & 2

Figure 11. Failure Pattern of Unit
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5 – VERIFICATION OF THE DESIGN 
METHOD

5.1 STRENGTH OF THE TIMBER UNIT

Fig. 12 illustrates the relationship between the fiber 
direction [deg] and the position of the curbed member 
unit. The fiber direction in the curved member is set to be 
0° at the center. The fiber direction at an angle is given 
by equation (17). As shown in the equation, this angle 
also varies depending on the central angle of the curved 
member.

/ (17)

The values for compressive strength, tensile strength, 
shear strength, embedment strength, and embedment 
stiffness of plywood were taken at the location of joint 2.
The bending strength and Young's modulus were 
standardized to the values at the center of the unit. The 
results of each strength and stiffness are summarized in 
Table 3.

Figure . Relationship between Fiber Direction and Curve

Table : Structural Performance of Each Specimens

(a)
Linear

(b)
30°

(c)
60°

(d)
90°

Bending strength [N/mm2] 18.77

Young’s modulus 4466

Compressive strength [N/mm2] 14.95 14.75 14.55 14.35

Tensile strength [N/mm2] 11.53 11.21 10.88 10.55

Shear strength [N/mm2] 1/99 1.84 1.68 1.53

Embedment strength [N/mm2] 28.56 30.85 34.49 38.12

(a) In calculation (b) In experiment
Figure . Deformation Diagram

5.2 COMPARISION OF CALCULATED 
VALUE AND EXPERIMENATL RESULTS

The failure loads and stiffness for the same settings of the 
specimens are calculated, and the validity of the method 
is confirmed by comparing these calculations with the 
experimental results. Since the specimens are positioned 
vertically during the experiment, the experimental values 
are transformed for comparison as if the members were 
installed diagonally and subjected to horizontal loading 
like a unit model. In the same conditions as the unit 
model, let the horizontal load be PH, the displacement be 

H, and the stiffness be kH. Similarly, in the experiment, 
let the horizontal load be PE., the displacement be E, and 
the stiffness be kE. Then, the relationships of both 
situations are given by equation (18) to (20). 

. 2H EP P (18)

2H E (19)

2H H H E Ek P P (20)

Fig. 14 shows the calculated failure loads for each test 
specimen using equation (10) to (13). Among the failure 
modes shown in Fig. 14, tensile failure resulted in the 
lowest failure load in linear member, and shear failure 
resulted in the lowest failure load in curbed members.

Figure . Calculated Failure Load

Figure . Comparison of Calculated Failure Load
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Figure . Comparison of Stiffness

Fig. 15 compares the calculated and experimental values 
of failure loads. The experimental failure load of the 
linear member was approximately half of the calculated 
ultimate load. As observed in Fig. 11-(a), a crack initiated 
from one side of the specimen and propagated toward the 
center. The failure occurred along the adhesive interface 
of the plywood layer where the central steel plate was 
embedded. These observations suggest that, in the 
experiment on the linear member, only half of the 
theoretically effective cross-section contributed to the 
structural capacity. On the other hand, for the curved 
member specimens, the experimental failure loads 
exceeded the calculated values. This indicates that the 
shear load equation may require revision.

Fig. 16 compares the calculated and experimental values 
of stiffness, and the calculated values exceeded the 
experimental results in all specimens. Equation (14) used 
in previous studies was developed for members 
composed of a single material. However, the specimens 
in this study consist of plywood, joints, and steel plates.
The equation does not account for rotational deformation 
that may occur at the joints; therefore, the experimentally 
obtained stiffness was lower than the calculated value. 
Improving the stiffness equation remains a subject for 
future research.

6 – CONCLUSION

In this study, we aimed to improve the design method for 
wooden unit shear walls composed of curved members 
by considering geometric nonlinearity and details of the 
joints. We were able to obtain the load-deformation 
relationships for the plywood itself and for a unit of 
curved members. However, when comparing the 
experimental results and calculated value of the failure
load and stiffness, it can be said that the theoretical 
models do not adequately represent the actual 
phenomena. Improving the accuracy of the theoretical 
equations and expanding the approach to multiple units 
are future challenges.
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8 – APPENDIX

8.1 DERIVATION OF DEFORMATION WITH 
GEOMETRIC NONLINEARITY

The stress in the curved member is expressed as follows: 

2 cos 2N P (a.1)

2 sin 2Q P (a.2)

2 Pr cos 2 cos 2M (a.3)

2 sin sin 0
2 2 2

sin 2 sin cos
2 2 2 2

r
M

r r

(a.4)

4 2
(a.5)

Let the Young's modulus of steel and wood be Es and Ew

[N/mm2], and the section modulus be Is and Iw [mm4].

1

1
(1) 0

1 13

1 1 1

1 1 1

sin 2 cos 2

4sin 4cos 4sin
2 2

4 2 3 sin 2 3 cos

s
s s s s

s s

M M M M
rd rd

E I E I

Pr
E I

(a.6)

22
(1)

12 2 1

2 Pr cos 2 cos 2
2 sin 2 2r

e e

M
K r K r

(a.7)
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2
(1)

2 2

3
2 2 2

2 2 2

sin 2 cos 2

4sin 4cos 4sin

4 2 sin 2 cos2 2
2 cos 2 2 1

w
w w

w w

M M
rd

E I
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(a.8)

(1) (1) (1) (1)

1 13

1 1 1

1 1 1

2

2 1

2 2

3
2 2 2

2

sin 2 cos 2

4sin 4cos 4sin
2 2

4 2 3 sin 2 3 cos

2 Pr cos 2 cos 2
2 sin 2 2

sin 2 cos 2

4sin 4cos 4sin

4 22 2

s r w

s s

e

w w

Pr
E I

K r

Pr
E I 2 2sin 2 cos

2 cos 2 2 1

(a.9)

In the same way, the additional moment generated by 
deformation is added to the bending moment, and 
perform the second iteration of deformation d2.
Deformations of steel plate, joint section, and plywood 
are expressed as s(2), r(2), and w(2), respectively.

12 cos 2 cos 2 2M Pr P
(a.10)

1

1
(2) 0

2
1 1(1)

(1)
1 1

sin 2 cos 22
1 sin 2 1 cos 2

s
s s s s

s
s s

M M M M
rd rd

E I E I

Pr
E I

(a.11)

(1)2
(2) (1)

12 2 1

2
2 sin 2 2r r

e e

PM
K r K r

(a.12)

2
(2)

2 22
(1)

(1) 2

2

sin 2 cos 2
2

2 sin 2

2 cos 2 1

w
w w

w
w w

M M
rd

E I

Pr
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(2) (2) (2) (2) (1)1s r w c c (a.14)

2
1 1

1 1

2 1

2 22

2 2

sin 2 cos 22
1 sin 2 1 cos 2

2
2 sin 2 2

sin 2 cos 2
2 sin 2 cos 2

sin 2 / 2 cos 2 / 2 1

s s

e

w w

Prc
E I

P
K r

Pr
E I

(a.15)

By repeating this calculation process, the deformation at 
the n-th step of the iterative calculation dn can be 
expressed as the sum of a geometric series with the first 
term d1 and a common ratio c.

( ) (1)1 1n
n c c (a.16)

From the above, the deformation as n approaches infinity 
can be expressed as follows, using c (0<c<1)). 

( ) ( ) (1)lim (1 )nn
c (a.17)

Then the deformation at the position of angle q is 
expressed as a ratio relative to the value at the central 
position (q=j/2).

( ) ( )

cos 2 cos 2
1 cos 2

(a.18)

Also, the bending moment considering nonlinearity is 
expressed as follows.

( )2 cos 2 cos 2 2M Pr P

(a.19)

8.2 DERIVING HORIZONTAL LOADS FROM 
EACH FAILURE TYPE

The horizontal loads at which maximum edge stress s(j/2) 
[N], tensile failure Pt [N], shear failure Ps [N], and 
embedment failure Pe [N] occur in the curved member 
are calculated as follows;

( 2) ( 2) ( 2)

2 cos 2 cos 2 2

2 cos 2

bF M Z N A

Pr P Z

P A
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(a.20)

2
cos 2 cos 2 cos 2

bF
P

r
Z A

(a.21)

2 2 cos 2t tP b h d F N P (a.22)

2 cos 2tP b h d F (a.23)

2 12

2 2

2 1

2 cos 2 cos 2 2
sin 2 2

s sP b h d F M r

Pr P
r

(a.24)

2 1

2 2

sin 2 2 2
cos 2 cos 2

sb h d F r
P

r
(a.25)

2 12

2 2

2 1

2 cos 2 cos 2 2
sin 2 2

e eP bdF M r

Pr P
r
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sin 2 2 2
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