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ABSTRACT: Operational and measurement noise presents a major challenge to the accuracy and reliability of structural 
health monitoring (SHM) systems, particularly in timber bridge applications. This study investigates the effectiveness of 
Variational Mode Decomposition (VMD), an advanced signal processing technique, in enhancing the quality of response 
measurements from a laboratory-scale pedestrian timber bridge. Acceleration and strain signals were collected under both 
intact and damaged conditions to perform a detailed signal analysis. VMD was applied to decompose the signals into 
narrowband intrinsic mode functions (IMFs), enabling the isolation of structural responses from noise. The method 
yielded high cross-correlation values (above 0.998) between original and reconstructed signals, confirming that critical 
features were preserved. Furthermore, energy retention analysis across IMFs revealed distinct patterns reflective of 
structural condition, with meaningful content concentrated in the lower-order modes and noise primarily captured by the
final components. These findings confirm the potential of VMD as a robust preprocessing tool for noise reduction within 
SHM frameworks, supporting improved interpretation of structural responses in timber bridge structures.
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1 – INTRODUCTION

Engineering constructions such as bridges and other civil 
infrastructures have a significant role in the economy and 
serve a vital purpose in facilitating the daily activities of 
individuals [1]. Growing concern about the economic and 
societal impacts of infrastructure aging, degradation, and 
exposure to extreme events has led to a heightened 
demand for more advanced structural health monitoring 
(SHM) systems and effective damage detection methods 
[2]. Bridges play a crucial role in transportation 
infrastructure networks [3]. As timber is considered as a 
structural material [4], timber bridges have many 
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advantageous characteristics, including cost-
effectiveness, ease of construction, environmental 
sustainability, and the potential for an extended lifetime 
[5-8]. However, timber bridges may provide challenges 
in some scenarios due to their inability to accommodate 
the current or increasing traffic volume, as well as their 
need for costly maintenance interventions [9]. Hence, it 
is essential to give precedence to the preservation and 
extension of the longevity of timber bridges [10-12].
Conventional bridge assessment approaches often lack 
the capability for real-time monitoring, hindering the 
immediate detection of structural issues. While SHM
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systems offer continuous monitoring capabilities,
extracting meaningful insights from the data collected 
can be challenging and requires advanced processing 
techniques [13]. Moreover, traditional SHM methods 
pose challenges in data analysis and processing [14].
Variational Mode Decomposition (VMD) has emerged as 
a valuable technique for analysing complex signals, 
especially when dealing with noise and overlapping 
frequency components. Its ability to break down non-
stationary signals into distinct modes makes it a strong 
candidate for diverse fields such as medical diagnostics, 
machinery fault detection, and structural health 
evaluation [15]. In engineering applications, VMD has 
proven effective in pinpointing structural damage by 
revealing subtle shifts in system dynamics, particularly 
when multiple frequencies are closely spaced [16], thus 
offering greater clarity in identifying changes in 
vibrational behaviour. Therefore, practical validation 
methods on laboratory-scale pedestrian bridges are 
required. This study is aimed to evaluate the capabilities 
of VMD for noise reduction in timber bridge monitoring
applications. This investigation involves a
comprehensive experimental study on a laboratory-scale 
pedestrian bridge. The performance of VMD is evaluated 
on sensor-based structural response data. Moreover, the 
effectiveness of VMD in early damage detection, 
condition assessment, and monitoring automation are 
evaluated.

2– Methodology

2.1 Laboratory timber bridge

A laboratory timber bridge with dimension of 8.5 m in 
length, 1.2 m in width, and 0.902 m in height was 
constructed in the UNSW Heavy Structures Laboratory,
as shown in Fig. 1. The timber bridge, consisting of four 
spans, was made of three glulam beams as girders and 
plywood panels as deck section. The timber bridge was 
supported by pin and roller bearings, which were 
mounted on concrete abutments.

Figure 1: Schematic of the laboratory timber bridge

2.2 Damage Scenario

As shown in Fig. 2, adding mass (20 kg) was applied as 
a damage scenario. The mass was added on the one of the 
midspans.

Figure 2: Adding mass (20 kg) on the laboratory timber bridge

2.3 Instrumentation

To capture the structural responses, four electrical 
resistance strain gauges and four accelerometers, as 
shown in Fig. 3 (a) and (b), were positioned at different 
locations (midspans of girders) on the timber bridge. The 
laboratory-scale timber pedestrian bridge was designed 
in accordance with AS 5100.2 and AS 1720.1 [17, 18].
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Figure 3 (a and b): Accelerometer and strain gauge 
sensors placed under the girder of the timber bridge

2.4 Impact Hammer Testing

As shown in Fig. 4, impact hammer testing was
conducted on the timber bridge where hammer strikes 
were applied at four locations of the deck section (E1, E2, 
E3 and E4), with six repetitions at each location. The 
sensor recording specifications (sampling frequency and 
duration) are detailed in Table 1.

Figure 4:  Impact hammer testing on the laboratory timber 
bridge

Table 1. Sensor specifications used for data acquisition, including 
sampling frequency, duration of each measurement, and number of 

repeated impacts per test 

Sensor
Sample 

Frequency

Measurement 
Duration per 

Incident

Impact 
Repetitions 

per 
Incident

Strain gauge 4.8 kHz 30 seconds 6

Accelerometer 10 kHz 30 seconds 6

2.5 Noise Reduction using VMD

In the context of SHM for bridges, measured signals, 
such as strain and acceleration responses, often contain 
noise due to measurement errors and operational 
conditions. To extract meaningful structural features, it is 
essential to denoise these signals and decompose them 
into their intrinsic components. In this study, we employ 
VMD as a preprocessing step for denoising and mode 
extraction of both strain and acceleration signals
collected from a laboratory bridge model.

2.5.1 Rationale for Using VMD in SHM

VMD is a data-driven signal decomposition technique 
that can adaptively separate a signal into a set of band-
limited IMFs. Each IMF captures a distinct oscillatory 
component, enabling the isolation of structural responses 
associated with different physical phenomena (e.g., low-
frequency global deformation vs. high-frequency local 
damage). This makes VMD particularly well-suited for 
SHM applications, where it is important to distinguish 
between meaningful structural behaviour and noise.

2.5.2 Theoretical Background of VMD

The goal of VMD [19] is to decompose a signal into a 
predefined number of IMFs by solving a constrained 
optimization problem in the frequency domain. The main 
properties of VMD include:

• Variational formulation: VMD is posed as an
optimization problem, ensuring a well-defined
mathematical foundation for decomposition.

• Mode separation: It produces modes that are compact
around their centre frequencies, which helps in separating
structural responses from noise and other dynamic
influences.
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• Adaptability: Unlike traditional methods such as
Empirical Mode Decomposition (EMD), VMD avoids
mode mixing and is less sensitive to endpoint effects,
making it more reliable for real-world SHM applications.

Each resulting from VMD can be represented
as:

where and denote the instantaneous 
amplitude and phase, respectively. These parameters are 
particularly useful in SHM because variations in 
amplitude and frequency may indicate structural changes 
or damage over time.

The instantaneous frequency (IF) is computed as:

To obtain both IF and instantaneous amplitude (IA), the 
analytic signal is formed using the Hilbert transform:

where is the Hilbert transform of . From this, 
IA and IF are derived:

These quantities provide valuable information for 
damage detection. For example, sudden spikes in IA or 
shifts in IF over time may correspond to stiffness changes 
in the bridge structure.

VMD solves the following augmented Lagrangian 
optimisation problem:

where is the original signal, are the IMFs, 
are their center frequencies, and is the Lagrange 
multiplier. The parameter controls the trade-off 
between bandwidth constraint and data fidelity.

In the context of SHM, this optimisation ensures that 
each extracted IMF represents a physically meaningful 
structural response mode, facilitating subsequent analysis 
like damage localisation or health indexing.

VMD requires the specification of several parameters. 
The selection of these parameters directly affects the 
quality of the decomposition and the interpretability of 
the modes. In SHM applications for bridges, where data 
is often limited due to logistical or economic constraints, 
parameter tuning is typically informed by prior 
knowledge rather than extensive search algorithms.

In this study, the parameters were chosen based on 
empirical studies and prior SHM literature [15, 16, 20].
Table 2 lists the parameter values used for decomposing 
strain and acceleration signals collected from the timber 
laboratory bridge.

Table 2. Selected parameters for VMD applied to signals .

Parameter Description and Relevance to SHM Value

Number of IMFs: Determines how many 
distinct frequency bands (structural modes) 

are extracted.
5

Bandwidth constraint: Controls the 
smoothness of each mode; higher values yield 

narrower bands, aiding noise suppression.
100

Time-step for dual ascent: Affects 
convergence and noise handling. Set to zero 

to improve noise robustness.
0

Convergence threshold: Determines when the 
algorithm stops. Small values ensure stable 

and accurate decomposition.

init

Centre frequency initialization method: 
Affects how initial guesses are distributed. 

Uniform initialization (0) is used for 
reproducibility.

0

DC
Inclusion of DC mode: If enabled, retains 

constant (mean) component; disabled (0) to 
remove slow drift in strain data.

0

3 – RESULTS

Operational and measurement noise remains a challenge 
in SHM, often masking the true dynamic behaviour of 
civil structures. To address this, VMD was employed in 
this study as a preprocessing step to enhance signal 
quality by isolating meaningful modal content from high-
frequency noise in both strain and acceleration 
measurements. The raw data collected from various 
sensor locations exhibited pronounced high-frequency 
components and overlapping modal characteristics, 

2097 https://doi.org/10.52202/080513-0255



particularly under excitations applied near the mid-span 
of the structure. VMD was applied to each signal using 
the parameter settings summarised in Table 2, with the 
objective of decomposing each measurement into five 
narrowband IMFs. The efficacy of this decomposition is 
visually demonstrated in Fig. 5 through 10, where a clear 
distinction emerges between informative oscillatory 
modes (IMFs 1–3) and higher-order components (IMFs 
4 and 5), which primarily capture residual noise and non-
structural content. Complementary quantitative results 
are provided in Table 3 for strain gauges and Table 4 for 
accelerometers. These tables report cross-correlation 
values between the original and reconstructed signals, 
along with the percentage of signal energy retained in 
each IMF, offering a direct comparison between intact 
and damaged states. Collectively, these results validate 
the utility of VMD as a robust signal conditioning tool in 
SHM, facilitating more accurate modal analysis and 
reliable damage detection by preserving the essential 
features of the structural response while suppressing non-
informative disturbances.

3.1 Analysis of Extracted IMFs

The application of VMD to acceleration (A1–A3) and 
strain (S1–S3) signals under excitation E1 provided 
valuable insights into the distribution of structural 
dynamics across different frequency bands in both 
damaged and intact conditions. As shown in Figs 5
through 10, each decomposed IMF represents a distinct 
oscillatory mode. In general, IMF1 and IMF2 capture 
high-frequency noise and local transient effects, while 
IMFs 3 to 5 contain more physically meaningful 
structural responses associated with global and modal 
behaviour. This decomposition makes it possible to 
distinguish between informative and spurious signal 
components. In strain signals, IMF1 alone accounted for 
over 80% of the total energy in the intact state, suggesting 
that global structural response is largely concentrated at 
low frequencies. However, in damaged conditions, the 
energy becomes more evenly distributed across IMF2 
and IMF3, indicating the presence of additional mid-
frequency content potentially due to local damage or 
stiffness loss. A similar trend is observed in acceleration 
signals, where broadband energy is spread across the first 
three IMFs in both structural states, with greater 
variability under damaged conditions. To ensure that 
only structurally relevant content is retained, the first 
three IMFs were used to reconstruct the denoised signals, 
while IMFs 4 and 5 were excluded from further analysis. 
These final two components consistently exhibited low 
energy and irregular, high-frequency content, confirming 
their association with measurement noise or non-
structural artifacts. The reconstructed signals based on 

IMFs 1 to 3 preserved the dominant dynamic behaviour
of the system and achieved high cross-correlation with 
the original signals—often exceeding 0.998 for strain 
data and 0.85 for acceleration measurements. These 
results confirm the utility of VMD as a reliable 
preprocessing tool for SHM, offering an effective 
balance between denoising and preservation of key 
modal characteristics necessary for downstream feature 
extraction and damage detection tasks.

3.2 Evaluation of VMD-Based Denoising

To assess the effectiveness of VMD for preprocessing 
structural signals, we analysed both strain gauge (S1–S4) 
and accelerometer (A1–A4) measurements under 
damaged and intact conditions. Two key metrics were 
used:

1) Cross-correlation between the original and
denoised signals, and

2) Energy retention across the first five IMFs.

Importantly, only the first three IMFs were used to 
reconstruct the denoised signal, while IMF4 and IMF5 
were considered residual noise and excluded from 
reconstruction. This decomposition strategy allows 
preservation of essential low-to-mid-frequency structural 
information while discarding high-frequency artifacts. 
The results, shown in Tables 3 and 4 demonstrate that 
VMD preserves signal morphology with high accuracy. 
For strain gauges, cross-correlation between the original 
and reconstructed signals remained extremely high in 
both structural states. For example, Sensor S1 yielded 
correlations of 0.9984 (damaged) and 0.9988 (intact),
confirming that VMD-denoised strain signals remain 
nearly indistinguishable from the originals. Sensors S2 to 
S4 also maintained correlations above 0.89, even under 
damaged conditions, underscoring the method's 
robustness. In comparison, acceleration signals exhibited 
slightly lower cross-correlation, with values ranging 
from 0.7322 to 0.8476 in the damaged state and 0.7530 
to 0.8516 in the intact state. This is expected due to the 
inherently noisier nature of acceleration measurements 
and the presence of higher-frequency dynamics. 
However, VMD still achieved strong agreement between 
original and reconstructed signals, particularly in Sensors 
A1, A2, and A4, where correlation exceeded 0.84 in at 
least one condition.

1) The energy retention patterns across IMFs
further reveal how VMD isolates dominant
structural behaviour. In both sensor types, the
first IMF consistently contains the majority of
the signal energy, particularly in signals from
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the intact structure, where global structural 
responses dominate. For instance:

2) Strain Sensor S1 showed 84.17% of its intact
energy in IMF1 versus 91.29% in the damaged
case.

3) Acceleration Sensor A4 showed 75.89% (intact)
vs. 78.46% (damaged) in IMF1, confirming
stability across structural states.

A comparison between intact and damaged signals 
reveals that damaged cases tend to exhibit more balanced 
energy across IMF1–IMF3, suggesting an increase in 
mid-frequency content, potentially due to damage-
induced changes in dynamic response. This is especially 
evident in S4 and A3, where the energy in IMF2 and 
IMF3 increased in the damaged condition. Cross-
correlation and energy retention analyses jointly confirm 
that VMD is an effective preprocessing tool for SHM. It 
isolates meaningful frequency content while maintaining 
signal fidelity under both damaged and intact conditions. 
This consistency across sensor types and structural states 
supports its application in feature extraction and damage 
detection frameworks.

Figure 5. Comparison of raw and denoised signals for Sensor A1 
under excitation E1

Figure 6. Comparison of raw and denoised signals for Sensor A2 
under excitation E1

Figure 7. Comparison of raw and denoised signals for Sensor A3 
under excitation E1
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Figure 8. Comparison of raw and denoised signals for Sensor S1 
under excitation E1

Figure 9. Comparison of raw and denoised signals for Sensor S2 
under excitation E1

Figure 10. Comparison of raw and denoised signals for Sensor S3 
under excitation E1

Table 3. Cross-correlation and energy retention results for 
acceleration sensors (A1-A4) under intact and damaged conditions

Sensor
Cross- 

Correlation 
(Intact)

Cross- 
Correlation 
(Damaged)

Energy 
Retention 
(Intact)

Energy 
Retention 

(Damaged)

S1 0.9988 0.9984

84.17%, 
13.54%, 
1.57%, 
0.47%, 
0.25%

91.29%, 
6.96%, 
0.97%, 
0.25%, 
0.53%

S2 0.9433 0.9800

75.52%, 
15.63%, 
6.47%, 
0.23%, 
2.15%

85.59%, 
11.34%, 
2.59%, 
0.52%, 
0.46%

S3 0.9140 0.8386

83.32%, 
9.11%, 
5.24%, 
1.16%, 
1.17%

86.44%, 
5.18%, 
6.38%, 
1.51%, 
0.49%

S4 0.8993 0.8347

69.04%, 
15.48%, 
12.42%, 
2.40%, 
0.66%

67.67%, 
14.02%, 
15.26%, 
1.84%, 
1.21%
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Sensor
Cross- 

correlation 
(Intact)

Cross- 
correlation 
(Damaged)

Energy 
Retention 
(Intact)

Energy 
Retention 

(Damaged)

A1 0.8277 0.8476

74.01%, 
9.03%, 
7.12%, 
6.07%, 
3.77%

73.23%, 
8.14%, 
7.04%, 
6.49%, 
5.10%

A2 0.8516 0.8428

76.34%, 
6.53%, 
6.53%, 
5.01%, 
5.59%

71.85%, 
8.49%, 
7.48%, 
6.09%, 
6.09%

A3 0.7530 0.7322

71.23%, 
10.02%, 
9.02%, 
5.96%, 
3.77%

70.00%, 
9.21%, 
8.19%, 
7.68%, 
4.92%

A4 0.8175 0.8466

75.89%, 
6.93%, 
6.06%, 
5.98%, 
5.14%

78.46%, 
6.04%, 
5.53%, 
4.97%, 
5.00%

4 – CONCLUSIONS AND 
RECOMMENDATIONS

This study demonstrates that VMD significantly 
improves the quality and interpretability of SHM data in 
timber bridge applications by effectively separating 
meaningful structural responses from high-frequency 
environmental noise. By decomposing acceleration and 
strain signals into five IMFs, VMD enables the isolation 
of dominant modal content within the first three IMFs, 
while filtering out noise-dominated components typically 
captured in IMFs 4 and 5. Quantitative results across 
multiple sensor locations reinforce VMD’s denoising 
capability. For example, cross-correlation values 
between the original and reconstructed signals reached as 
high as 0.9988 for strain and 0.8755 for acceleration in 
intact conditions, confirming the preservation of signal 
morphology. In damaged states, the energy distribution 
shifted from a dominant single-IMF concentration (e.g., 
91.29% in IMF1 for strain sensor S1) to a more balanced 
spread across multiple IMFs—indicating changes in 
dynamic behaviour consistent with structural 
degradation. These findings underscore VMD’s potential 
not only as a denoising tool but also as a feature 
extraction technique for damage detection. The 
consistent trends observed across both damaged and 
intact scenarios suggest that integrating VMD into SHM 
workflows can enhance the sensitivity of damage 
identification. Ultimately, the use of VMD in timber 
bridge monitoring enables more accurate interpretation 
of structural responses, supports informed maintenance 

strategies, and contributes to improved safety under 
variable environmental and operational conditions.
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