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ABSTRACT: While wood-based building materials can help reduce emissions in the construction industry, their 
increased use impacts forests and ecosystems. To address this, the Structural Timber Optimizer (STO) was developed to 
minimize material usage in wood-based building components by increasing structural utilization. This paper aims to 
validate the functionality of the STO in finding the optimal solution for optimizing the stiffness of a wall-like beam 
(wlBeam) under bending, by comparing the deflection of the solution with a known near-optimal reference. Additionally,
the influence of different parameters affecting the result and performance of the optimization were tested and quantitively 
assessed. This study also presents insights into the newly developed segmented discrete modeling approach as well as 
advancements in the optimization process such as the implementation of an initial population. The results show that 
optimization parameters constraining the diversity of the population e.g. mutation rate and the use of a fine mesh in finite 
element analysis improve the overall performance in finding the best solution. With this study the effectiveness of the 
STO process can be confirmed, demonstrating its ability to identify the optimal solution for the wlBeam problem.
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1 – INTRODUCTION

To limit the environmental impact of the construction 
industry, the reduction of material-related emissions 
through the increased use of bio-based building materials 
and the high utilization of structural elements is a 
promising solution. Structural optimization methods for 
anisotropic material, such as laminated composites,
enhance stiffness and overall structural performance by
optimizing material orientations within structural 
elements [1]. While structural optimization techniques 
found in high tech industries, e.g. aerospace or 
automotive industries, are becoming more advanced, 
implementations in the construction industry are still 
limited, especially in relation to building components 
made from wood-based materials [2]. Studies have 
demonstrated material reductions of 15-20% by 
optimizing the cross-sectional width along the length of 
glue-laminated timber beams [3] or through topology 
optimization of the middle layer in cross laminated 
timber slabs [4]. Recent research on implementing 
orthotropic materials such as timber and bamboo in a 
topology optimization approach show promising
advancements [5]. However, studies validating these 
methods through practical testing, such as all-wooden 
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trusses [6] or mass optimized cross laminated timber 
panels [7], remain underrepresented. This gap can be 
attributed for one to the limited accessibility of code and 
for another to the failed transition from theoretical 
research to practical testing and industry use cases.

To address this research gap, the authors at BOKU 
University developed the Structural Timber Optimizer 
(STO) as an accessible and user-friendly framework [8].
This framework integrates the state-of-the-art 
commercial finite element (FE) software ABAQUS [9]
with its extensive capabilities and high accuracy of its FE 
solver forming the foundation for the structural analysis 
in the STO. With a large user base and well-documented 
resources, ABAQUS is an accessible solution that 
supports interactive processes through its native Python 
scripting interface. In the STO framework, ABAQUS 
commands are encapsulated as functions within larger 
Python scripts, which can be executed via command-line 
arguments.

The other side of the framework is the optimization 
algorithm controlling the iterative change of variables 
with the aim of finding the best solution to a given 
objective. STO utilizes a genetic algorithm (GA), 
implemented through the Python package PyGAD [10],
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iteratively changing the optimization variables to reach 
the optimal fitness. GAs mimic natural selection by 
evolving a population of solutions over generations. Each 
individual is represented by a genome defined by 
optimization variables and its fitness is evaluated based 
on the objective function. Through selection, crossover, 
and mutation, the best genes propagate, gradually 
converging toward an optimal or near-optimal solution
[11]. GAs are probabilistic optimization methods, 
meaning they do not guarantee finding the best solution, 
even with unlimited computation time. However, unlike 
deterministic methods, GAs can handle black-box 
problems without requiring explicit problem formulation. 
This flexibility makes them well-suited for the STO, 
allowing application to various structural optimization 
problems, including different load cases and optimization 
objectives. To facilitate the optimization of various 
dimensions and types of structural elements the STO
implements a 3D model generation through the python 
package CadQuery [12].

2 – ADVANCEMENTS OF STO

2.1 MODELING

Since the development of the accessible framework STO
[8] several advancements such as the modeling approach
have been made. While the general optimization
approach of STO could be implemented for a variety of
use cases, advancements were made considering the use
case of a multi-layered wall element made from oriented
strand board (OSB). As shown in Figure 1, the first
development of the STO considered an element-based
approach with a continuous domain in each layer of the
wall element. This continuous domain was then meshed,
allowing each finite element to be assigned individual
material orientations. However, this approach proved to
be limiting in several ways. While a continuous panel
with varying material orientations and material grades
would likely increase the structural utilization of the
element, current OSB manufacturing methods make this
approach not of practical use at present.

Therefore, a new modeling approach has been developed 
segmenting the continuous domain of a layer into discrete 
parts allowing the individual material definition of each 
part including its interaction to the neighboring elements.

To segment the continuous panel into discrete parts, the 
STO makes use of the ABAQUS meshing algorithm. 
After generating the mesh, used for finite element 
analysis, the nodal data of each finite element is exported 
as a list of x, y, and z coordinates that can be further 

processed into a multi part 3D model using the CadQuery 
python package.

Figure 1:Continuous vs. segmented discrete modeling approach.

The segmented discrete parts can then be imported into
ABAQUS as a step file making the structural element 
fully parametric in the material definition of each part. 
Additionally, individual parts can be excluded from the 
simulation enabling the use of variables to control their 
mass (mass = 1, no mass = 0).

As the continuous domain is split into several parts and 
the orientation of the parts can be independently changed 
by the optimizer, corresponding logic interactions 
between parts should be modelled accordingly. While the 
interlayer bonding in a multilayered OSB element is 
modelled as a tied contact (constraint), the contact areas 
between the sides of the individual parts must adapt
according to their orientation. Within this logic, equally 
oriented parts are considered as continuous, enforcing a 
tie constraint between them. For all further interactions a 
general contact domain with a normal and tangential 
behavior is generated. Due to the high number of 
interactions, the complexity as well as the nonlinear 
behavior of the model increases. For these reasons and the 
high displacement of some of the solutions, the ABAQUS 
explicit dynamic solver was chosen. While this further 
introduces time as a variable in the structural model the 
loading rate can be cautiously increased to a quasi-static 
problem, reducing calculation time. The material behavior 
was modeled using an elastic material defined through the 
engineering constants E1: 6780 MPa, E2: 2680 MPa, E3:
1000 MPa, G12: 1090 MPa, G13 / G23: 60 MPa, as found in 
EN 12369 [13] and ν12: 0.128, ν13: 0.211, ν23: 0.433 as 
found in Li et.al [14]. To determine whether a structural 
element has exceeded elastic plastic deformation, a failure 
model is required. For this, two applicable methods were 
identified. While an integrated failure model (damage 
criterion), as shown in Figure 2, yielded better results 
within the optimization, a penalty constraint implemented 
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outside of ABAQUS presented a viable alternative. When 
returning the fitness value, the stress values of the element 
would indicate an element exceeding the strength of the 
material resulting in the application of a penalty to the 
fitness value accordingly. While this penalty constraint 
eliminates the need for complex material definitions in 
ABAQUS, inaccurate weights of the penalty can lead to a 
distorted search space for the optimizer. As ABAQUS 
does not provide an applicable failure model for wood 
when using volumetric elements, a ductile damage was 
implemented using fracture strain with an instant damage 
definition.

Figure 2: ABAQUS material model testing on 4-point bending beam.

2.1 OPTIMIZATION

With the aim to reduce runtime and convergence, an 
initial population was introduced. When using a 
probabilistic method like the GA, the starting point 
significantly influences the outcome of the optimization.
Instead of randomly creating an initial set of variables, in 
this case orientation values, a predefined set of solutions
is passed to the GA as the starting point for optimization. 
Studies have shown that principle stress lines can be 
applied to topology optimization problems [15] and, in 
the case of continuous fiber placement, can enhance the 
maximum load bearing capacity compared to 
unidirectional fiber placement [16]. STO makes use of the 
principle stresses in the initial population as follows: (1) 
In ABAQUS, an isotropic material is assigned to the 
segmented discrete model and analyzed under the same 
boundary conditions as the final optimization model. (2) 
The stress tensors (s11, s22, s12) are exported from the odb
file through the xy Data option for each finite element of 
the model. (3) The 2D stress tensor (σ) is constructed and 
solved for the eigenvalue (λ) and eigenvector (v). (4) The 
eigenvalues are sorted in descending order to identify the 
maximum principal stresses, and the orientation angle (θ)
is calculated using the arctan2 function. (5) To ensure 
consistent orientations, the direction is adjusted if s12 is a 
negative value (θ = 180° − θ). (6) To complete the 
extraction of the principal stress orientations, the 
orientations are averaged across all finite elements in each 
segmented discrete part and returned as a list of 
orientations. (7) As the GA works with discrete 
orientation variables, the orientation values need to be 

interpolated to the selected orientations. While the 
principal stress orientations are interpolated to their 
closest possible orientation the generation of the initial 
population introduces an additional randomness that 
allows adjacent parts to influence the interpolation as well 
as its starting point. This is needed to provide a diverse set 
of solutions for the initial population and can be controlled 
via the initial population randomness variable.

Figure 3: Processing and interpolation of principle stress orientation 
to initial population.

As multi-objective optimization algorithms, such as 
NSGA-2, are also available in the pyGAD package, 
efforts were made to implement this function in the STO. 
The STO returns now the maximum displacement values, 
maximum stress, and the mass of the element from 
ABAQUS, which can be used as single or multi 
objective. This combined with the possibility of 
eliminating individual parts within the structure, a 
topology optimization can be implemented. In the case of 
multi-objective optimization of mass and displacement, 
the variable space for the GA is extended by an additional 
value outside of the value range of orientations. This 
value can then be used as the identifier for zero mass parts 
without doubling the variable count for the GA.

3 – VALIDATION AND INFLUENCIAL 
PARAMETERS

To validate the optimization approach, a three-point 
bending test setup was selected using a wall-like beam 
(wlBeam) as the test specimen, optimized to maximize 
stiffness. The choice in setup and specimen dimensions
was primarily motivated by the given boundary 
conditions of the Zwick Roell 250 kN universal testing 
machine, which would be used within full-scale testing,
and the desire to maintain an aspect ratio representative of 
a wall element. The wlBeam was discretized into 48 
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segments, each of which could be oriented at either 0° or 
90°, as shown in Figure 4.

Prior to the optimization, an analytical solution was 
calculated to establish an optimal or near-optimal
reference configuration, where all three layers of the 
wlBeam were positioned horizontally (0°), resulting in a 
deflection of 15.05mm.

Figure 4: Segmented discrete parts and variables of wall-like beam 
(wlBeam) under bending.

To evaluate the impact of the different parameters (Table 
1) on the optimization algorithm, the deflection of the best
overall solution from the STO was compared to that of the
reference configuration. This deviation, expressed as a
percentage in Figure 5, indicates whether the optimization
achieved a better solution (smaller deflection - positive
value) or remained below the known "best" solution
(larger deflection -negative value).
Since the initial population has a randomness when
generated, it varies with each run, influencing the starting 
point of the optimization. To account for this variability, 
the best overall solution was also compared to the best 
solution from the initial population. This comparison 
provided additional insights into the optimizer’s rate of 
convergence.
The optimization parameters, listed in Table 1, were 
systematically varied, with the baseline (bl) serving as the 
initial setup to examine the effects of increasing or 
decreasing the parameters. In addition to the parameters 
defined in Table 1, the mutation type was set to “random,” 
the crossover type to “single point,” and the parent 
selection type to “tournament.”

Table 1: Parameters assessed within the optimization using the STO of 
the wall-like beam (wlBeam)

GA Parameter Baseline (bl) Low (l) High (h)
numGenerations (G) 18
populationSize (P) 60 30 120
initPopRandomness (PR) 0.3 0.15 -
numParentsMating (PM) 18 6 -
mutationNumSolutions (M) 3 1 -
tournamentSize (T) 12 - 24
crossoverProbability (C) 1 0.5 -
meshSize(MS) 250 83 -

Most parameters was assessed in four separate 
optimization runs, while bl_P(l) was subjected to three,
bl_T(h) and bl_C(l) to two, and bl_MS(l)_M(l)_PR(l) to 
one. The best-performing result of each category was used 
within the following comparison.

As shown in Figure 5, the most noticeable impact on the 
optimization outcome and convergence rate was
achieved by decreasing the mesh size. While this 
parameter does not directly affect the genetic algorithm 
(GA), it improves the accuracy of the ABAQUS 
simulation, leading to more predictable and precise 
fitness values.

A general trend of improved performance was observed 
when certain optimization parameters were when
constrained. Reducing randomly mutated solutions in 
each generation from three to one solution showed an 
overall better solution as well as higher convergence rate.
Similarly, decreasing the number of parents “mating” for 
the next offspring showed a higher convergence rate.

Reducing the randomness of the initial population 
resulted in a better overall solution but diminished the 
relative improvement from the initial population. 
Constraining the population size led to the lowest 
solution overall, while doubling the population size 
yielded a better solution, with no improvement in the 
convergence rate in either case. 

Figure 5: Influence of optimziation parameters on the best solution 
(deviation to reference configuration) and rate of convergence 
(decrease from best solution of the first generation).

The solutions of the last parameter test
bl_MS(l)_M(l)_PR(l) were evaluated and the distribution 
of the fitness value within every generation plotted using 
the kernel density estimation (KDE), shown in Figure 6.
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In unfavorable configurations, failure was prone to occur, 
leading to extreme displacements as the remaining 
elements collapse without support. To improve the 
readability of Figure 6, the extremely high displacements 
were capped at 50 mm deflection.

Figure 6: Distribution of the populations fitness values (displacement) 
of each generation using the kernel density estimation (KDE).

The distribution of fitness values across generations 
shows a steep increase in the first three generations, after 
which all configurations of the 4th generation 
successfully withstand the applied load, and the highest 
density of samples is found between 16mm and 18mm of 
maximum deflection. While new best solutions were 
found until the overall best solution was reached in 
generation 13, with 14.59mm of maximum deflection,
the rate of convergence decreased at a high rate after the 
first generations. Over the generations, a shift in 
population distribution, i.e., diversity, was observed. In 
generations with a high percentage of "good" individuals, 
the diversity increased in the following generations. A 
higher proportion of individuals with higher 
displacement values appeared, which contributed to the 
broader spread of solutions.

4 – DISCUSSION AND CONCLUSION

The advances in the Structural Timber Optimizer (STO),
as outlined in this paper, enable a practical and versatile 
approach for the structural optimization of wood-based 
building components. The segmented discrete modeling 
approach allows for individual assignment of any 
material properties such as orientation or material grade 
as well as the removal of individual parts of a structure.

Advances in the ABAQUS model have been made, 
including the implementation of failure criteria 
facilitating a precise structural response of the 
component. While the segmented discrete modeling 
approach provides several advantages, the increased
complexity of the structural problem in ABAQUS made 
the optimization computationally more expensive. While 
ABAQUS standard solver showed good convergence in 
the continuous model approach, the current analysis can 
only be performed using the explicit solver. While the 
structural model in ABAQUS provides an accurate 
representation of the structural behavior, the time per 
calculation (around 50 seconds) lowers the performance 
of the algorithm. Therefore, increasing the rate of 
convergence of the algorithm and quality of the best 
solution is key to an efficient optimization using the STO 
approach. To facilitate an ideal starting point for the 
optimization this paper outlines the principal stress 
orientation approach to generate a set of solutions as the 
initial population. 

In this study some of the influential optimization 
parameters were systemically assessed to validate the 
overall optimization approach as well to set initial 
parameters for further optimization. The case of the 
wlBeam under bending was optimized to maximize 
stiffness, with 48 variables each allowing 90° and 0° as
possible values resulting in 482 possible solutions. It was 
shown that a population size of 60, with a low mutation 
rate of 1 individual and reduced randomness in the initial 
population, produced good results, with the optimal 
solution found in 13 generations. The results suggest that 
constraints on the population diversity (i.e. high selection 
pressure) result in better performance. However,
balancing the diversity of the population throughout the 
optimization is crucial to avoid premature convergence 
while ensuring effective exploration of the search space.
The observed shift in population diversity can serve as a 
reliable indicator of whether the diversity is properly 
balanced. In the case of the wlBeam optimization this 
positive impact of recombining a more diverse 
population can be observed between the generation 7 and 
13 where the diversity of the population increased 
leading to the best solution in generation 13 (low 
diversity).

While advancements in the initial population and
sensitivity analysis of optimization parameters positively 
impacted the efficiency of the optimization algorithm,
further studies could explore the use of “smart” 
recombination techniques to replace the stochastic one-
point crossover methods. This can be archived using 
reinforcement learning for decision making during the 
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crossover or by utilizing the large amount of available 
data from ABAQUS, e.g. stresses in each part to 
determine whether it is fully utilized or not. In addition
to displacement as an objective, the ultimate load-bearing 
capacity could also serve as a practical optimization 
objective and warrants further exploration.
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