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ABSTRACT: Digital twin technology has recently emerged as a transformative approach in building management,
enhancing transparency, sustainability, safety, health, and comfort. This paper explores how the European HORIZON
project BUILDCHAIN leverages this technology to promote the use of timber as a viable material even for taller buildings,
emphasizing its sustainability benefits and improving its safety and serviceability metrics. The BUILDCHAIN project
integrates diverse data sources, including 4D, 5D, and 6D Building Information Models (BIM), Finite Element (FE) models,
and real-time sensor data, to create dynamic, real-time virtual replicas of physical buildings. These digital twins provide
a comprehensive and accessible view of building properties and performance, facilitating continuous monitoring and
updating of FE models based on real-world data to ensure ongoing structural health and safety. Through the case study
of two tall buildings made of CLT panels, we demonstrate the practical application of this technology and discuss how
integrating data from multiple buildings can refine and re-evaluate existing design procedures and standards. This offers a
new paradigm in building design validation. By enhancing transparency and incorporating advanced monitoring capabilities,
the BUILDCHAIN project paves the way for more resilient, efficient, and sustainable building practices.
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1 – INTRODUCTION

Timber is increasingly recognized as a sustainable and re-
newable material for tall buildings, aligning with global ef-
forts to reduce environmental impact in construction. While
it offers significant advantages – such as a lower carbon
footprint and renewability – ists use in high-rise structures
still faces adoption challenges. Providing accurate digital
information on the as-built properties and performance of
timber buildings can enhance tranparency and build con-
fidence in this material. It also offers oppoprtunities to
refine standardized design procedures, especially when
discrepancies arise between expected and actual building
behavior. Improving these procedures can help boost key
performance metrics related to structural integrity, safety,
and serviceability—critical factors for architects, engineers,
and regulatory bodies. Demonstrating timber’s capabilities
through real-world performance data is a great way to pro-
mote its acceptance and build trust within the construction
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industry.

Tall timber buildings can exhibit unexpected vibrational
behavior under dynamic loads like wind and seismic activ-
ity, often diverging from engineering predictions. Bayesian
inference has evolved into a powerful statistical tool for in-
ferring design parameters in simulation models, and by that
updating the model of the structure, using non-destructive
tests such as forced vibration tests conducted on as-built
structures [11, 12]. However, challenges can arise within
the Bayesian framework due to persistent systematic er-
rors in simulation models. These errors often stem from
simplifications made when translating complex, real-world
conditions into numerical representations. Even with the
incorporation of stochastic elements to account for uncer-
tainties, the updating process may introduce systematic
biases that compensate for unknown factors. While this
typically leads to a better match with observed building be-
havior, it can distort the original physics-based parameters
and reduce the generalizability of the model. To address
this, we propose a novel and robust framework that accu-
rately identifies design and modeling parameters by inte-
grating digital twin models from multiple structures that
share common parameters representing the same physical
properties.

Engineers, however, typically do not have access to mea-
surements from buildings that share the physical properties
of interest. In many cases, even engineers who designed a
spedific building structure do not have access to measure-

2260https://doi.org/10.52202/080513-0276



ments taken on that very structure. To make a follow-up
procedure feasible, a platform where all type of digital in-
formation related to a building – such as measurements and
digital twins – can be discovered and shared – when permit-
ted by users, is essential. The BUILDCHAIN project’s
Digital Knowledge Graph (DKG) system [2, 5] (learn
more about the European Commisision-funded project at
https://buildchain-project.eu/) plays a key role in support-
ing follow-up procedures to identify discrepancies between
as-designed and as-built performance metrics. In particular,
the DKG supports the proposed multi-building approach by
making experimental data from various structures both dis-
coverable and accessible. Acting as a secure and validated
repository, it offers researchers, engineers and standard-
ization bodies access to trusted and reliable data. By inte-
grating information across multiple buildings, the system
enables the application of probabilistic methods to refine
and update design parameters, thereby enhancing predic-
tive accuracy. This approach not only supports the safety,
serviceability, and structural integrity of individual build-
ings but also contributes generalized insights to improve
future design standards and procedures.
The second key enabler of the proposed multi-building

updating framework is the mathematical formulation of
a joint updating procedure, that links shared parameters
across multiple building models. This formulation, devel-
oped in this paper, allows for integrated parameter refine-
ment using data from different structures.
The demonstrate this, the remainder of this paper is struc-

tured as follows. Sec. 2 presents the methodology, begin-
ning in Sec. 2.1 with the role of the BUILDCHAIN system
to support digital twinning by creating structured, traceable,
discoverable and transparent building data via a Decentral-
ized Knowledge Graph (DKG) system and building related
ontologies. Section 2.2 introduces digital twin technology,
explaining the probabilistic process of updating model pa-
rameters using measurements of the behavior of a single
structure. Expanding on this, Sec. 2.3 proposes a novel
joint updating framework that leverages multiple building
datasets to refine structural models and improve predictive
accuracy. Section 3 applies this methodology to tall timber
buildings, illustrating how data on these structures can be
accessed through the BUILDCHAIN platform using two
case study buildings. It then introduces the joint Bayesian
updating approach for these two buildings, demonstrating
how measurement data from multiple buildings enhance
model parameter refinement and improve predictive accu-
racy. Finally, Sec.4 summarizes the findings and discusses
the broader implications of integrating digital twin tech-
nology with multi-model Bayesian updating. The paper
concludes by reflecting on how this approach enhances
the reliability of timber-based construction, informs future
design practices, and contributes to the wider adoption of
sustainable high-rise timber buildings.

2 – METHODOLOGY

2.1 KNOWLEDGE GRAPH FOR TRANSPAR-
ENT BUILDING INFORMATION

Digital Building Logbook Digital Building Logbooks
(DBLs) serve as repositories for storing essential build-

Figure 1: BUILDCHAIN architecture

ing data, from administrative records to performance met-
rics. By digitizing building-related information, DBLs
enhance information management and facilitate more in-
formed decision-making across the entire building lifecycle.
Their impact includes real-time monitoring, operational op-
timization, and improved sustainability in the Architecture,
Engineering, and Construction (AEC) industry, offering
a trusted, single point of access to verified building data.
Recognizing their importance, policymakers, public au-
thorities, and enterprises have increasingly supported DBL
initiatives, leading to multiple pilot projects and devel-
opments [7, 8, 14, 19]. A European Commission study
concluded in October 2023 provided an EU-wide semantic
data model and technical guidelines for DBL implementa-
tion, aiming to create a network of interoperable national
platforms connected via a European portal [3].
The rough architecture of the BUILDCHAIN DBL sys-

tem is illustrated in Figure 1, depicting its three primary
layers. At the foundation, the data layer stores and orga-
nizes essential building-related information. The middle
layer integrates the in-built BEXEL BIM management soft-
ware alongside various tools and services that facilitate data
processing and analysis. The top application layer provides
multiple APIs for diverse functionalities and serves as the
interface for the main BUILDCHAIN UI, ensuring seam-
less user interaction and accessibility. Among the available
APIS is one specifically designed to enable the digital twin-
ning procedures described in this paper. It supports model
updating for both, structural health monitoring keeping in
track with changes of material properties and the enhance-
ment of design procedures using measurements data from
single or multiple buildings.

Discoverability via structured building data In the
BUILDCHAIN DBL system, the data layer is organized
into Knowledge Graphs, which provide an organized repre-
sentation of real-world entities and their interconnections.
Knowledge Graphs facilitate the integration of diverse data
sources, ensuring that information is both accessible and
contextually meaningful. By leveraging building-related
ontologies and semantic relationships, these graphs en-
hance advanced querying, automated reasoning, and intel-
ligent decision support in construction management [17,
18].
A significant portion of building-related data is inher-

ently structured within Building Information Modeling
(BIM) frameworks, which employ standardized, interoper-
able schemas such as Industry Foundation Classes (IFC),
BRICK, and SAFRAN. IFC, in particular, serves as a cru-
cial open standard for enabling seamless data exchange
across various stakeholders and software platforms in the
Architecture, Engineering, and Construction (AEC) indus-
try. By structuring as much information as possible within
the IFC framework, we ensure high interoperability and
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longevity of data within the construction ecosystem.
BIM extends beyond traditional 3D modeling to incor-

porate additional dimensions of data that enhance project
planning and lifecycle management. 4D BIM integrates
time-related information, enabling improved scheduling
and visualization of construction sequences. 5D BIM in-
corporates cost estimation, linking financial data with the
project timeline and model elements. 6D BIM extends this
further by including sustainability and facility management
data, allowing for better decision-making regarding energy
efficiency, maintenance, and long-term asset performance.
However, some data types do not natively fit into IFC or

similar BIM schemas. Examples include complex simula-
tion models, compliance documentation, design standards
reports, and performance assessment records. For such
data, a careful and structured approach to ontology defini-
tion is required. These ontologies should be designed to
complement IFC and other BIM standards, ensuring that ex-
ternal datasets remain interoperable while enhancing data
discoverability, mining capabilities, and decision-making
processes. By aligning non-IFC data with well-defined
ontological structures, we maximize the potential for cross-
platform compatibility and integration within the broader
construction knowledge ecosystem.

Decentralized Knolwedge Graph technology ADKG
is a distributed data structure that combines the advantages
of knowledge graphs and blockchain. It enables structured
data representation while maintaining security, accessi-
bility, and trust. OriginTrail Decentralized Knowledge
Graph presents a global, open data structure composed of
interlinked Knowledge Assets structured in a Resource De-
scription Framework (RDF) knowledge graph hosted on
an open, permissionless decentralized network of Decen-
tralized Knowledge Graph nodes. [18]
The Decentralized Knowledge Graph consists of three

layers. The Decentralized Knowledge Graph layer stores
the knowledge graph data, distributed across the network
in separate graph database instances. The blockchain layer
interfaces with various blockchains, such as NeuroWeb
on Polkadot, Base, and Gnosis to manage node relations
and implement trustless protocols. Lastly, the application
layer includes both Artificial Intelligence (AI) driven and
traditional applications that use the OriginTrail Decentral-
ized Knowledge Graph in their data processes. OriginTrail
Decentralized Knowledge Graph architecture is presented
in Figure 2.
The Decentralized Knowledge Graph (DKG) supports

both, public and private knowledge. The public graph is
replicated across all network nodes, allowing data discov-
erability through a decentralized index and enabling search
queries. Private graphs are hosted by individual nodes and
connected to the public graph. Once information is discov-
ered in private graphs, data exchange protocols, like a data
marketplace protocol, facilitate data retrieval.
The protocol actors in the OriginTrail Decentralized

Knowledge Graph (DKG) consist of knowledge publishers,
who publish knowledge; data holders that help uphold the
DKG and are incentivized with tokens; and knowledge
users, who query and utilize the knowledge. Both knowl-
edge publishers and knowledge users can be humans or AI

Figure 2: DKG Architecture

agents, enabling a more dynamic and intelligent exchange
of information within the network.

Blockchain technology and smart contracts for trace-
ability Datasets published to the Decentralized Knowl-
edge Graph (DKG) are called Knowledge Assets and are
associated with cryptographic identities (DID) of the pub-
lishers, stored on the blockchain. Knowledge Assets are
structured as graph-linked data, have cryptographic finger-
prints (Merkle roots) on the blockchain, are timestamped,
and are replicated across peers. This ensures that each
graph vertex or edge can be verifiably linked to its pub-
lisher DID and dataset, enabling data source and integrity
verification. See a more detailed information on the DKG
technology in [17, 18], on the description of Edge Nodes,
that facilitate diverse decentralized AI application within
the DKG [16] and on the Core Nodes that ensure reliable
access to the DKG in [15]. Blockchain technology is in-
tegrated into Decentralized Knowledge Graph to enhance
data provenance and immutability, ensuring each piece of
knowledge can be verified in terms of source. Smart con-
tracts regulate data access and updates, ensuring trust and
security among stakeholders. Blockchains are trust net-
works established to enable reliable computation through
decentralized consensus, operating as a global, dependable
computer.

Transparent Sustainability Metrics The presented
DKG system with BIM integration used for data exchange,
is well suited for life cycle analysis (LCA), and the tran-
parency of its resulted metrics. At its core, the system
extracts a detailed bill of quantities (BoQ) from a build-
ing’s BIM model and links this data with life cycle in-
ventory (LCI) databases. This facilitates an automated as-
sessment of the environmental impacts associated with the
building’s construction phase. The integration of DKG
technology ensures secure data exchange, verifiability
through blockchain-based validation, and seamless scalabil-
ity—both in terms of data volume and process expansion.
Beyond the construction phase, the framework supports

dynamic LCA by incorporating embedded sensor data
throughout a building’s operational life. This includes real-
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time monitoring of parameters such as temperature, energy
consumption, and water usage, enabling a more accurate
evaluation of use-stage environmental impacts. Such in-
tegration is particularly valuable for refining LCAmodels
and adjusting sustainability strategies based on real-world
performance data.
And finally, the in-built BIM-based tool (BEXEL man-

ager) allows for a unified visualization of both input pa-
rameters and output results of the LCA analysis, giving
us an overview of the whole process. This structured ap-
proach facilitates comparative scenario analysis, which
might be very important, when assessing and comparing
LCAmetrics for for different building types. For example,
the average embodied greenhouse gas emissions of rein-
forced concrete buildings are 42.68% higher than that of
mass timber construction (MTC), when compared over a
number of studies [4, 22]. When looking at just this param-
eter, timber seems to have favorable environmental impact.
However, overall impact can vary widely depending on
different scenarios considered: variety of building lifespan
and climate where it is used, as well as end of life scenarios
and carbon sequestration can have massive implications on
cradle to grave analysis. For instance, carbon storage of
wood can be considered neutral if the wood is burned or left
to decay at building demolition phase [4]. To help us make
sense of timber building LCA, we expect a wide variety
of such considerations will be needed, including processes
that have not yet even occurred, as is the case of MTC
demolition. A robust, flexible and scalable framework of
verified networked data, as the one that was described in the
BUILDCHAIN project LCAworkgroup, can be incredibly
useful.

Integrating as-built measurement data A critical ad-
vantage of the BUILDCHAINDKG framework is its ability
to incorporate real-world measurement data from as-built
structures, enabling continuous model refinement and sup-
porting digital twinning. By integrating sensor readings,
non-destructive testing results, and structural health mon-
itoring (SHM) data, the system bridges the gap between
design-phase assumptions and real-world performance, im-
proving predictive accuracy and model validation. This
ensures that digital twins evolve dynamically, reflecting
actual building behavior rather than relying solely on pre-
construction simulations.
The DKG’s decentralized architecture plays a key role in

managing and verifying as-built data. Sensor readings (e.g.,
acceleration, temperature, humidity, and strain) are linked
to specific building components through semantic relation-
ships, ensuring structured, interoperable, and traceable data
storage. Smart contracts regulate access and updates, main-
taining data integrity while enabling probabilistic model
updating, as will be detailed in the next section. By integrat-
ing multi-building datasets, this approach enhances trans-
parency and enables cross-structure comparisons, leading
to improved design procedures and more resilient, data-
driven decision-making.

2.2 DIGITALTWINNING
Digital twinning enables a dynamic representation of

a building by continuously refining its structural model

based on real-world data. This process ensures that as-built
performance aligns with as-designed expectations, enhanc-
ing both reliability and predictive accuracy. Suppose, a
structural model – typically a finite element (FE) model –
simulates some measureable property of the building, de-
noted as , which represents key aspects of building
behavior such as maximum deformations, displacements,
or modal properties.

Identifying uncertain modeling parameters Uncertain-
ties in material properties, geometric characteristics, and
connection parameters introduce deviations between pre-
dicted and actual performance. To account for these mod-
eling uncertainties, we define a set of parameters collected
in a vector in the form of random variables, whose prior
distribution is determined based on engineering judg-
ment or available measurements. The simulation model
then serves as a forward model, predicting the measurable
behavior from a given set of input parameters , abstractly
desribed by the forward operator :

(1)

Bayesian updating with measured data When real-
world measurements meas become available, Bayesian
inference allows the refinement of model parameters by
updating the prior distribution. Using Bayes’ theorem, the
updated posterior distribution is given by

meas

likelihood

meas

prior

meas d
evidence

(2)

In this formulation, the likelihood function meas quan-
tifies the probability of observing the measured building
properties meas given specific values of the parameters .
The term represents the domain over which the parame-
ters are defined. The likelihood for a specific parameter
value can be written as

meas meas (3)

where represents the probability distribution of the
error model, consisting of the measurement error and the
modeling error and denotes a realization of this random
error . This formulation implies that the actual measure-
ment meas can be expressed in an additive form as a sum
of the predicted building behavior , computed from the
true value of the modeling parameter true and an unknown
realization of the error model

meas true
error

(4)

In practical examples, the modeling error is often ignored,
and measurement error is assumed to be a white noise, with
variances originating from expert knowledge of the mea-
surement device that was used, or from the computation
the measured values were determined. Even when the dis-
tribution is accurately determined, unfortunately, the
likelihood function is often not available in a closed form.
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To approximate the posterior distribution, sampling tech-
niques such as the Markov Chain Monte Carlo (MCMC)
method, specifically using a random walk strategy, can be
employed. This approach involves generating samples in
the parameter space, where each step requires evaluating
the likelihood—necessitating multiple solutions of the de-
terministic model —as well as computing the prior. When
the deterministic solver is computationally demanding, this
procedure can become highly resource-intensive. However,
this computational burden can be significantly alleviated
by employing surrogate models, which provide efficient
approximations of the deterministic solver while preserving
accuracy (see e.g. in [20, 21]). For an extensive overview
of this Bayesian inversion procedure the reader is directed
to the detailed chapter of Friedman et al. [6].

2.3 MULTI-BUILDING TWINING
Identifying joint parameter vector When unconven-
tional materials or connections are used in multiple build-
ings, measurements from each structure can be integrated
for joint parameter updating. Instead of updating parame-
ters separately for each building, a unified approach intro-
duces a joint parameter set mapped to individual building
parameters via transformation functions. Shared parame-
ters ensure consistency across models, while independent
parameters remain unconstrained. Without the loss of gen-
erality, let’s suppose we have two similar building struc-
tures. One with uncertain parameters and the other one
with parameters . By defining maps

(5)

allows that for the shared parameters the random walk can
be done for the two models in a join manner.

Merging measurable building properties and measure-
ments The measurable quantities of the first
building and the one of the second building from
both buildings form a joint vector,

(6)

where and are the two forward operators, mapping
from the parameters and to the measurable properties
of the two buildings and . The likelihood computation
requires the description of a measurement noise. We as-
sume that the measurement errors of the two buildings are
independent, thus their joint distribution is the product of
individual error distributions.

Joint updating With this joint formulation, the updating
process can be performed in a unified manner, ensuring that
shared parameters lead to a consistent posterior distribution.
The Bayesian posterior of the joined parameter set is then
expressed as

meas
meas

meas d
(7)

The measured values, meas and meas are also merged to-
gether into a single vector meas

Figure 3: Two CLD building analysed: a)Yoker building b)Pal-
isaden building

Using MCMC sampling, the posterior estimates of are
obtained and mapped back to each model via transforma-
tion functions and , improving parameter estimation
across buildings.

3 – CASE STUDY: JOINT UPDATING OF
DESIGN PARAMETERS OFTALL
TIMBER BUILDINGS

We demonstrate the proposed approach using two tall
CLT buildings. Traditional Bayesian inference has been
effective in identifying design parameters from individual
building measurements[11–13]. However, independent
updates require manual interpretation to generalize trends.
Our approach streamlines this by integrating measurements
from multiple buildings into a unified update. Here we will
showcase this for the updating properties of the elastic
moduli of CLT panels using measured modal properties of
two building.

3.1 DATADISCOVERABILITYVIABUILD-
CHAIN

Data structure, ontology The ontology for digital twins
of building structures, as depicted in Figure 1, provides a
conceptual framework that captures the essential compo-
nents and relationships involved in the modeling, monitor-
ing, and analysis of buildings. At the center is the build-
ing itself, which connects to several interrelated elements.
These include the physical components of the structure,
such as its main load-bearing elements and the sensors at-
tached to it; the various analysis models used in the digital
twinning process, including simulation models like Finite
Element (FE) models, surrogate models that may serve
as simplified representations of parametrized FE models,
and hybrid models or digital twins that integrate physics-
based simulations with observed data by Bayesian model
updating. The ontology also encompasses all types of data
involved in the twinning procedure—ranging from ma-
terial properties and sensor data collected during forced
or ambient vibration tests (e.g., acceleration time series)
to processed data such as mode shapes and natural fre-
quencies. Associated with these are the data processing
techniques used to extract meaningful information, such
as operational modal analysis. Furthermore, the ontology
includes performance metrics such as structural reliability
and serviceability, along with the parameters that influ-
ence or describe them. Lastly, it incorporates the methods
applied throughout the digital twinning workflow, from
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parameter estimation to model updating and uncertainty
quantification.
Together, these domains form a structured ontology that

facilitates the integration of heterogeneous data sources
and analytical approaches. A more detailed view of the
knowledge assets involved in the digital twinning process
is presented in the mind map in Fig. 6, which illustrates
both the knowledge assets used for multi-building updat-
ing and those generated during the process, along with
their interconnections. Some of these assets are stored
directly within the BUILDCHAIN DBL system, while oth-
ers may be externally maintained and only linked to the
DBL. This structured representation not only enables the
creation of accurate and robust digital twins but also pro-
motes interoperability, standardization, and cross-building
analyses—ultimately contributing to the broader adoption
and increased reliability of digital twin technology in the
built environment.

Discoverability via BUILDCHAIN Using the BUILD-
CHAIN user interface, knowledge assets structured in a
knowledge graph—according to the ontology described
above—can be easily registered. Once a building has been
designed, its corresponding administrative information, the
physical model (BIM), the designed material properties,
and optionally the Finite Element (FE) model can be stored
as knowledge assets in the BUILDCHAIN DBL system.
Following a measurement campaign, or if the building
is equipped with an IoT system, experimental analysts
can store measured modal properties as knowledge assets.
Through the BEXEL add-on—BUILDCHAIN’s integrated
BIM application—the IFC model can be enriched with sen-
sor locations and measured modal data by importing these
assets using a standard universal file format such as UNV.
In this way, measurement data becomes directly visible
and accessible within the BIM environment, enhancing
transparency and traceability of experimental results (see
Fig. 4.)
When designers, researchers, or standardization bod-

ies wish to evaluate the accuracy of standardized design
procedures by comparing designed and measured modal
properties, this information becomes readily discoverable
through OriginTrail’s AI-assisted search and data-mining
interface. Thanks to the structured representation of data,
buildings sharing specific characteristics—such as exceed-
ing a certain height, using a specific design code or being
constructed from CLT panels—can be easily identified. It
is also possible to filter for buildings with available mea-
surement data. Once the two case study buildings analyzed
in this paper are located, users can leverage the BUILD-
CHAIN application developed for digital twinning and
multi-building updating to assess whether design parame-
ters should be revised.

Building 1: Yoker CLT Structure (Glasgow, UK) The
first case study focuses on a seven-storey Cross-Laminated
Timber (CLT) structure in Glasgow, known as Yoker
(Fig. 3) [10], incorporating uncertain design parameters

(8)

where , , represent the elastic moduli of CLT panels
along the three primary directions, , denote in-plane
shear moduli and represents the distributed mass. Uni-
form priors were assigned based on engineering judgment.
To validated the FE model, a forced vibration test was
conducted, measuring natural frequencies and mode
shapes [1]. The measurable outputs were structured as
follows:

(9)

Gaussian measurement error was assumed, with variances
derived from operational modal analysis [12].

Building 2: Palisaden CLT Structure (Ås, Norway)
The second case study examines an eight-story CLT struc-
ture located in Ås, known as the Palisaden building (Fig. 3).
Unlike Yoker, this structure features exposed CLT and
plasterboard-covered walls. The uncertain parameters were
defined as

ext spring (10)

where scales the vertical elastic modulus of the CLT
walls, represents the in-plane shear stiffness scaling
factor of the walls, and ext accounts for external wall
stiffness adjustments due to facade effects. spring models
foundation stiffness, while scales the total mass. Non-
informative priors were assigned for the modeling parame-
ters, with bounds defined by engineering expertise.
For model calibration, ambient vibration measurements

were available, consisting of frequencies for four key vi-
bration modes:

(11)

A detailed description of the FE model setup and prior
assumptions can be foung in [9, 11].

3.2 JOINT, MULTI-BUILDING TWINNING
Joint parameter description Despite differences in their
parameterization, both buildings share a common uncer-
tain parameter representing the same physical property, the
vertical elastic modulus of CLT walls. In the Yoker model,
this is directly represented as the modulus , while in the
Palisaden model, it is scaled relative to the manufacturer’s
ETA value via:

(12)

To enhance predictive accuracy, a joint parameter update
was conducted, introducing a generalized correction for
CLT elasticity while simultaneously refining all the other
building-specific parameters. This involved defining a joint
parameter set , composed of ten dimensionless reference
parameters (germs)—one shared germ linking both models’
elastic modulus and nine independent building-specific
germs. Each germ followed a standard uniform distribution

. The linear maps and were defined
such way, that they scale and shift these reference joint
parameters the bounds given for the building-specific
model parameters.
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Figure 4: Modal properties visualized in BUILDCHAIN’s BIM software, the BEXEL-add-on: the colored elements are the ones to which
sensor is attached and the color shows the mode shape values corresponding to the selected mode with frequency 3.13 Hz. The table
below also shows the normalized mode shape values in the relevant directions and the coordinates of the sensor.

Joint measurement description The combined measur-
able output from both structures was formulated as:

(13)

This enabled a joint update of model parameters, integrat-
ing both forced vibration test results (Yoker) and ambient
vibration measurements (Palisaden) into a unified Bayesian
inference framework.

Joint updating and results The resulting posterior dis-
tributions for the jointly updated parameters are shown in
Fig. 7. Despite structural and methodological differences,
the joint update significantly narrowed the uncertainty in
the elastic modulus of CLT walls.
When each model was updated independently, both sug-

gested a downward correction from themanufacturer’s ETA
value. However, the joint update provided a more robust
and generalizable correction, reinforcing confidence in the
inferred parameter shift.
Notably, if additional buildings were integrated into the

analysis and exhibited similar trends, this would provide
strong statistical evidence that ETA values for vertical elas-
tic modulus should be systematically reduced in design
standards. Such insights demonstrate how multi-building
digital twinning via BUILDCHAIN can drive data-driven
improvements in structural design and material specifica-
tions.

4 – SUMMARY
This study demonstrates the effectiveness of a joint

Bayesian updating framework for refining modeling param-
eters across multiple Cross-Laminated Timber (CLT) build-
ings. By integrating structural health monitoring (SHM)

data from different structures into a unified probabilistic
model, the approach ensures consistency in shared parame-
ters while maintaining building-specific variations. Com-
pared to traditional independent model updates, this joint
updating strategy enhances robustness, generalizability,
and predictive accuracy, offering valuable insights for both
structural design and material optimization.
A key requirement for successful multi-building

Bayesian updating is access to reliable and standardized
measurement data across different structures. This chal-
lenge is effectively addressed by decentralized data-sharing
frameworks, such as the BUILDCHAIN project’s De-
centralized Knowledge Graph (DKG) and Distributed
Bayesian Learning (DBL) system. The DKG DBL sys-
tem plays a crucial role in:

• Ensuring interoperability: By structuring data through
semantic ontologies, the DKG facilitates seamless
integration of heterogeneous datasets, including FE
models, experimental data, and prior distributions.

• Enhancing data accessibility: The decentralized na-
ture of BUILDCHAIN allows for secure, transparent,
and permissioned access to high-quality measurement
data, overcoming data silos.

• Supporting scalable Bayesian updating: By enabling
distributed inference, the DBL system allows users
to update model parameters in real-time as new data
becomes available, paving the way for continuous
learning-based digital twinning.

• Improving model calibration: By aggregating multi-
building data, the system facilitates statistically ro-
bust parameter updates, reducing reliance on limited
single-building datasets and enhancing the reliability
of predictive models.
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Figure 5: Main elements linked to digital twinning procedure

Figure 6: Mind map of design parameter updating: different type of BUILDCHAIN knowledge assets for multi-building design update,
and their connection

The integration of digital twinning with decentralized
data frameworks marks a transformative step in structural
engineering and SHM. By embedding probabilistic infer-
ence capabilities into knowledge graphs, BUILDCHAIN
not only supports individual building monitoring but also
enables large-scale, multi-building intelligence. This ca-
pability is particularly relevant for next-generation smart
infrastructure, where real-time model updates based on live
sensor data can significantly improve resilience, safety, and
sustainability. This study lays the groundwork for a scal-
able, data-driven approach to digital twinning, ensuring
more accurate, efficient, and resilient engineering practices
in the future.
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