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ABSTRACT: Since 2010 there has been an increasing presence of surface and interstitial moisture and mould within 
single- and multi-residential buildings in Australia. The increasing presence of moisture and mould has coincided with 
the adoption of national energy efficiency regulations, which have aimed to reduce the energy needed to heat and/or cool 
new buildings. The energy efficiency regulations have led to increased amounts of insulation within façade systems, 
combined with a greater focus on exterior weather-tightness and interior building-sealing (airtightness). Furthermore, 
most Australian mid-rise façade systems comprise composite structures of high-embodied energy concrete, steel and clay 
brick components. This research seeks to establish what the built fabric requirements for timber-framed and solid-wood 
mid-rise high-performance façade systems may need to comprise for Australia’s warm-humid, temperate and cool 
temperate climates such that they do not accumulate moisture or support surface or interstitial mould growth 
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1 – INTRODUCTION 
This research is exploring the built fabric requirements 
for the design and construction of timber-framed façade 
systems for mid-rise, (3 to 8 storey) buildings in 
Australia. Whilst balloon framing is seemingly common 
in north America [1-3], and northern Europe [4], the 
majority of mid-rise façade systems in Australia are 
constructed from masonry (concrete and clay brick) 
and/or composite steel structures [5]. Recognising the 
need to reduce the carbon-intensity of mid-rise façade 
systems, this research is exploring how Australian solid 
wood and engineered wood products may be utilised 
within high-performance mid-rise buildings   Whereas 
parallel research is exploring aspects of structure and 
prefabrication [6], this research is focussing on 
hygrothermics and the built fabric assemblages that may 
be needed to illuminate long-term moisture accumulation 
and mitigate surface and interstitial mould growth [7]. A 
national survey conducted by the Australian Building 
Codes Board and directed at design and construction 
professionals identified that up to 40% of multi-
residential buildings had a concerning presence of 
condensation and/or mould [8]. The confluence of 
weather-tightness and energy efficiency requirements 
within the Australian national building regulations and 
ventilation have been identified as significant 
contributors to this increased presence of condensation 
and mould within Australian buildings [9-13]. 
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2 – BACKGROUND 

In Australia the gradual shift to a low-carbon economy is 
driving an exploration of methods to reduce the carbon 
intensity of the predominant concrete and steel façade 
systems [14, 15]. However, this may also allow for an 
opportunity to explore the use of timber-framed facade 
systems that could provide a lower carbon intensity [16-
18]. It is also internationally recognised that all 
construction materials, whether they be concrete, steel or 
timber, are susceptible to damage from mismanagement 
of inward- and outward-bound moisture. Timber 
products can provide a lower carbon intensity but if the 
design and construction of moisture control is not 
adequately completed, there are significant durability and 
human health implications.     

Cross disciplinary research conducted in Australia has 
highlighted the connection between the energy efficiency 
regulations and the presence of condensation and mould 
in buildings. However, much of this research has 
focussed on the design of low-rise timber-framed 
external wall systems and unconditioned (cold) roof 
spaces[8, 12, 19-25]. Managing moisture and mould 
within buildings and within the building envelope 
systems not a new problem [26-37], but has become an 
increasingly apparent issue from two very different 
perspectives, namely:  

Since the 1950’s as governments around the
world have attempted to improve the interior air
quality for human health reasons [34, 38-41],
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Fig. 1. Climate zone map for thermal design [42] Fig. 2. Koppen-Geiger climate classification map for Australia for 1980–
2016 [43] 

Fig. 3. NatHERS climate zone map for thermal design [44] Fig. 4. CEC Title 24 Residential Compliance Manual [45] 
.

Since the 1980’s as governments around the
world have attempted reduce energy used to
condition buildings [46-52]

Fortunately, the climate typology in many countries can 
be quite finite, supporting a focussed guidance for design 
and construction professionals and building occupants. 
However, the large landmass of Australia, with 
significant areas of coastal fringe, encompasses several 
climate types.  

Fig. 1 shows the NCC climate zone map for Australia, 
which has been specified since 2003 [42] and includes 
eight climate types, from hot and humid to cool-
temperate. Fig. 2 shows a recent Koppen-Geiger climate 
classification map for Australia which includes sixteen 
climate classifications. Recognising some of   these 
limitations, a more detailed climate segregation was 
established by the Nationwide House Energy rating 
Scheme, which established 69 broad climate zones for 
Australia (Fig. 3) [44]. However, even within the 
NatHERS postcode derived climate zones, some 
locations ask the user to select one from up to three 
climate zones for simulation purposes. For comparison 

purposes, the sixteen climate zones from the Title 24 
climate map for California [45] is shown in Fig. 4, and 
the purple inset in Fig. 3 shows the relative size of 
California to Australia. Significantly, the method to 
ascertain and select data for building energy rating 
purposes does not consider precipitation or background 
relative humidity [53], yet these two inputs are critical for 
hygrothermal simulation [54-56]. 

Surface and interstitial mould that is visible to the human 
eye can pose a significant risk to human health [57-59], 
and Nath [60] identified that Australia has twice the 
Asthma rate of the OECD. United Kingdom researchers 
identified in 2021, that up to £1Billion of the National 
Health Service budget is spent on the treatment of human 
health conditions resulting from moisture and mould in 
buildings[61].  

This is not a problem unique to Australia. As noted above, 
similar experiences have occurred in most developed 
nations from the 1930s. The German standards system 
published its first moisture management guidelines in 
1952 [34], whilst the first standard in the United Kingdom 
was produced in 1975 [35], both with many updates since. 
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In Australia, the now defunct National Building 
Technology Centre, published three notes in 1964; NSB 
32: House design for Australian cold-winter climates, 
NSB 61: Condensation in dwellings and NSB 78: Some 
condensation problems [62-64], with regular updates until 
1974. North America, including Canada, had their own 
challenges and the ‘condo crisis’ in during the 1980s and 
1990s  [37, 65, 66]. New Zealand’s ‘leaky building 
syndrome’ which commenced in the 1990s, identified two 
key and often mis-diagnosed causes, namely moisture 
ingress and water vapour diffusion, and many blamed the 
shift to performance-based building regulation [66-68]. 
Recent estimates have established that the leaky building 
syndrome in New Zealand has cost its economy more than 
NZD$47B [69, 70].  

Most of the previous research in Australia has focussed 
on low-rise residential buildings. That research has 
identified that the external wall systems of new housing 
within temperate and cool-temperate Australia, with an 
airtightness of <8ACR@n50, should include: 

a vented and drained cavity behind the primary
cladding system, combined with
a vapour permeable membrane on the exterior
side of the insulation, and
a vapour control membrane on the interior side
of the insulation layer [71-75].

But do these same principles apply to mid-rise buildings? 
In Australia, low-rise timber-framed buildings generally 
have low internal moisture loads and rates of occupancy. 
Subject to the mid-rise building’s function, the interior 
occupancy rates could be five to seven times greater than 
a residential building. The median house size in Australia 
is 232m2 [76], with an average of 2.52 persons per 
household [77], which equates to 92m2 of household 
floor space per person. By comparison densely populated 
office spaces include <10m2 per person [78]. Whether 
this building passively or mechanically manages the 
interior generated vapour load, it will be at least nine time 
greater than a residential building, and as noted above, 
Australia seems to currently have a condensation and 
mould problem in new housing.  

Within this context, this research intends to explore the 
inter-relationship between built fabric choices, 
insulation, airtightness, weather-tightness, and 
ventilation, of timber-framed and solid-wood mid-rise 
façade systems. 

3 – PROJECT DESCRIPTION 
This research will use a combination of international 
literature, one dimensional (1D) and two dimensional 
hygrothermal simulation software and test walls located 
within test buildings to ascertain:  

What the most climatically appropriate material
assemblages for a timber-framed or CLT facade
systems should be in at least three different
Australian climate types,
Establish if one- and two- dimensional
hygrothermal simulation results are similar to
measured moisture and temperature conditions
within test walls

Provide data to further calibrate hygrothermal
simulation tools.

This research will not be exploring other regulatory 
aspects, like fire. This research will provide guidance to 
industry and government policy makers regarding 
options for mid-rise timber-framed and CLT façade 
systems that adequately manage moisture and may 
provide a pathway to a low-carbon and sustainable future. 

4 – EXPERIMENTAL SETUP 
This research which comprises a cross-disciplinary 
research team and industry collaborators will explore the 
hygrothermal design parameters via four distinct stages, 
namely: 

An international literature review, to establish
some likely assemblage patterns for cool-
temperate, temperate and warm humid climates.
The completion of one dimensional
hygrothermal simulations to confirm climatic
suitability for the nominated mid-rise facade
systems.
The completion of two dimensional
hygrothermal simulations to confirm climatic
suitability for the nominated mid-rise facade
systems.
The construction, installation and detailed
measurement of test walls, and
The analysis of simulated and measured data to
inform software calibration.

4.1 INTERNATIONAL LITERATURE REVIEW 
The first stage of the research involves the cross 
disciplinary academic- and industry-based team working 
with a PhD candidate to complete an international 
literature review examining the hygrothermally 
successful and unsuccessful use of solid-wood and 
engineered-wood products within mid-rise façade 
systems. Case studies will include published data from 
northern Europe, Canada, the United States of America, 
the United Kingdom and some low to mid-rise examples 
from Australia.  

4.2 ONE- AND TWO- DIMENSIONAL 
HYGROTHERMAL AND BIO-HYGROTHERMAL 
SIMULATION 
The façade systems identified within the literature review 
stage will be tested via transient hygrothermal and 
transient mould growth calculation to ascertain mould 
growth risks and/or moisture accumulation. The transient 
simulation methods will adopt principles established in 
previous research [79-82] and the principles of ASHRAE 
Standard 160 [83] and the Australian AIRAH guideline 
DA-07 [84]. Recognising the significantly different 
climatic conditions in Eastern Australia, the 
hygrothermal simulations will explore options for 
Launceston (cool-temperate), Sydney (marine-
temperate), and Brisbane (warm-humid). These three 
climate types encompass the largest areas of 
development and construction in Australia.  
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One-dimensional simulation will analyse assemblages at 
a façade system level, whilst two-dimensional 
simulations will be used to explore: 

individual component performance,
facade component connections, and
Façade-floor plate/column connections.

The completion of the hygrothermal simulations will 
provide a deep understanding of the software capabilities 
and impacts of various interior climate, exterior climate 
and material physical property inputs.  

4.3 Test wall empirical data 
Empirical studies have been extensively explored for the 
development and calibration of building energy rating 
software [85]. In a similar fashion, since the 1990’s 

countries and academic institutions have been exploring 
the empirical validation of hygrothermal simulations 
tools. This has included test buildings, test walls and 
component testing in Germany, Finland, Japan, Canada, 
the USA and New Zealand [85-90].  

Recognising the diverse climates of Australia, this stage 
of the project will select high-performance timber-
framed façade systems identified in the hygrothermal 
simulation stage of the project and construct full-scale 
test walls. The test walls will be installed onto existing 
test buildings in Launceston (Fig. 5), Sydney (Fig. 6) 
and Brisbane (Fig. 7). The interior of each test building  

 

Fig. 5. The Launceston test buildings (cool-temperate climate)[85]  

Fig. 6. The University of Sydney test building (temperate climate)  

Fig. 7. The Queensland Department of Agriculture and Fisheries test building, Salisbury (warm-humid climate)[87] 
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.

will be controlled in a manner that maintains the 
temperature and relative humidity to agreed values that 
represent a chosen function. To represent human 
occupation, humidifiers will add moisture to the air and 
dehumidifiers will keep the interior relative humidity 
below internationally accepted values (i.e., <65%RH).  

Each wall system will include a series of data logger 
connected temperature, relative humidity and moisture 
sensors, enabling a longitudinal data acquisition. The test 
wall will be tested and commissioned prior to the 
southern hemisphere winter and will be monitored for 
one calendar year, to allow for the measurement of winter 
moisture adsorption and summer drying. The sensor 
array will allow for the observation of inward and 
outward flow of heat and moisture.  

Recognising the importance of mould growth and the 
development of mould growth algorithms [91-99] if the 
timber elements maintain a higher than expected 
moisture content, or the insulation layer maintains a 
higher than expected value for relative humidity, there 
will be the opportunity for a forensic analysis of mould 
growth.  

4.4 SOFTWARE CALIBRATION 

An integral part of any empirical research is the 
collection of simulation based and site measured data to 
allow for the calibration of simulation tools [98, 100-
106]. This process will allow for the comparison of: 

Simulated and measured temperature
Simulated and measured relative humidity
Simulated and measured timber moisture
content

The comparison of these data sets may identify 
algorithms that need improvement and/or construction 
material physical properties that need further refinement. 

5. RESULTS AND DISCUSSION
As this research is in its early stages, this paper is 
presenting the research methodology. As the research 
progresses, further articles will be published.  

6. CONCLUSION
This research aims to explore opportunities and built 
fabric assemblages for the design and construction of 
mid-rise timber-framed façade systems in Australia. 
Whilst timber-framed mid-rise façade systems are 
common in many parts of the northern hemisphere, they 
are not common in Australia, showing a gap in both 
system knowledge and system performance. With a focus 
on hygrothermal performance and recognising 
Australia’s diverse climates, the research will include an 
in-depth one and two dimensional hygrothermal analyses 
of likely systems, followed by the installation and 
detailed measurement of full-scale test walls in 
Launceston (cool-temperate), Sydney (marine temperate) 
and Brisbane (warm humid). The findings of the research 
will be lead to the development of design guides for the 
design and construction professions, and policy makers. 

The data collected will support ongoing calibration of 
hygrothermal and bio-hygrothermal (mould growth) 
simulation tools.   
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