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ABSTRACT: The moisture content greatly affects the long-term creep and time-dependent deformation of timber 
structures. Therefore, monitoring and predicting the moisture content of timber structures is crucial. The variation of 
moisture content was obtained through long-term service experiments. An analysis method based on the physics-informed 
neural networks (PINN) is proposed. The moisture diffusion model based on Fick’s second diffusion law and the boundary 
condition are incorporated in the PINN simulation. The coefficients in the model are also set as trainable parameters,
which simplifies calculations while ensuring accuracy. Additionally, transfer learning was applied to achieve satisfactory
prediction with small data samples, and the predicted results were compared with the experiments. The PINN-based 
method shows higher efficiency and coefficient independence compared with the previous numerical models.
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1 INTRODUCTION

The duration of load effect and exposure to the 
environment can cause time-dependent deformation, 
creep and damage accumulation in timber structures, 
leading to a decrease in mechanical performance under 
long-term application. Analysis models have been 
proposed to evaluate the performance degradation. 
Among the proposed methods, the moisture diffusion 
analysis is an important module since the moisture 
content of timber greatly influences the creep and time-
dependent deformation. The diffusion models have been 
established based on Fick’s second diffusion law[1].
However, when solving the second-order partial 
differential equation (PDE) of the model, the parameters 
determined through empirical equations may not be 
accurate, and the calculation can be complicated [2,3].

Deep learning has achieved great success in engineering
problems. The physics-informed neural networks (PINNs) 
can embed the physics information into the deep learning 
models, making it more interpretable and extensible. 
Compared with classical numerical models, PINNs could 
avoid complex mesh generation and errors caused by the 
difference schemes, identify the unknown parameters 
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contained in the models and tackle high-dimensional 
problems governed by parameterized PDEs, showing 
high efficiency in solving both forward and inverse PDE 
problems[4,5].

In this study, a moisture diffusion model was established
based on PINNs. The boundary condition laws and the 
PDE of Fick’s second diffusion law were embedded in 
the neural networks. The diffusion and surface emissivity
coefficients, two important parameters in Fick’s second 
diffusion law, were set trainable in the network. This 
allowed the model to avoid complex calculations and 
ensured the accuracy of the model. The prediction 
obtained through the model was validated and verified 
through long-term experimental results of post-tensioned 
CLT shear walls [6].

2 EXPERIMENT SETTINGS AND 
MODEL SIMPLIFACTION

Three post-tensioned CLT shear walls were monitored to 
study the changing mechanical properties under varied 
environment [6]. The dimensions of the experimental post-
tensioned CLT shear wall elements are 1,500 × 1,100 × 
175 mm (height × width × depth). To monitor the 
moisture content variation, moisture electrodes were 
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installed at different locations of the CLT shear walls.
Two penetration depths of moisture electrodes (i.e., 30 
and 45 mm) were chosen. The moisture content of timber 
can be assessed by a moisture meter based on the 
electrical resistance method. The test positions were 
named Wx-xx, where the number following ‘W’ is the 
number of the shear wall, and the number following ‘-’
indicates the penetration depths.

Since the panel edges possess a small area and are often 
covered by adjacent floors and walls in real structures, and 
the thickness of CLT walls was much smaller than the 
width and the height of CLT walls, the CLT walls are 
assumed to mainly absorb or desorb moisture 
perpendicular to the panel surface. The influence of the 
glue layers was not considered since the glue layer only 
had little effect on the moisture diffusion behavior [7]. The 
experiment settings and model simplification was shown 
in Figure 1.

Figure 1 The experiment settings and model simplification

3 ESTABLISHMENT OF PINN MODEL 

3.1 INSTRUCTION FOR THE PINN MODEL

The core of PINNs method is to convert the problems of 
solving partial differential equations to optimization 
problems. The general form of nonlinear partial 
differential equations can be expressed as:
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Where, u is the solution of the partial differential 
equation, [ , ]u is a nonlinear operator with parameter

, x and t are the spatial and temporal variables., is
the computational domain, Tt is the terminal time of
analysis, h x is the initial condition of the equation and 

,g x t is the boundary condition of the equation.

A deep neural network ( , ; )n x t is established to 
approximate the solution u . The loss function defined as 
Equation (2) ,as shown below, can be calculated with the 
approximated results of u .
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As shown in Equation (2), the loss function comprises of 
four parts. The 

0
( , )uL is the residual of initial 

condition, ( , )ub
L is the residual of boundary condition,

( , )fL is the residual of partial differential equation, 
and ( , )uL is the residual of training data. The residual
of the partial differential equation ( , )ub

L embeds the 
physical laws represented by the partial differential 
equation into the deep network. It enhances the 
generalization ability of the network.

Based on the constructed loss function, the deep network
and the parameter of the equation are trained using the 
gradient descent method, as shown in Equation (3). The 
appropriate and can be found for minimizing the 
loss equation through training.
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3.2 THE ESTABLISHMENT OF THE PINN 
MODEL

Moisture diffusion analysis
The numerical model for moisture transfer was developed 
based on Fick’s second diffusion law given by Equation 
(4), describing the moisture diffusion under an unsteady 
state.

2

2x

u uD
t x

Where u is the moisture content of timber, t is time, x is
the distance in the direction perpendicular to the wall 
surface, and xD is diffusion coefficient.

Moreover, the boundary condition based on Fick’s first 
diffusion law was shown in Equation (5), showing the 
moisture flux at the surface is related to the difference of 
the moisture content and the moisture content of both the 
environment and at the surface.

( )x air surfD u S u u

Where S is surface emissivity, airu and surfu are the
moisture content corresponding to the ambient 
environment and moisture content at the surface of CLT 
walls, respectively. The airu can be obtained by Equation
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(6), a function of environmental relative humidity and 
temperature [8].
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The diffusion coefficient xD and the surface emissivity S
can be obtained through Equation (7) and Equation (8) 
according to previous research [9,10].

5 4 2( ) 2.0736 10 /u
xD u e m day

3 4( ) 2.7650 10 /uS u e m day

The framework of the PINN model
Based on the numerical analysis model, the PINN model 
predicting the moisture content of the timber element is 
established and its frame work is shown in Figure 2. The 
model comprises of two main modules, the neural 
network and the physics constraint. The distance in the 
direction perpendicular to the wall surface (x) and time (t)
were inputs of the neural network (NN). The moisture 
contents (u) at any given point and any time of the CLT 
shear walls were the output, obtained by the inputs 
trained in a fully connected neural network 
approximation function.

Figure 2 the framework of the PINN model

The NN module composed of three main layers: the input 
layer, hidden layers, and output layer. It can be defined by 
Equation (9)~(11), representing a mapping from the input 
layer 0 dinN R to the output layer 1L doutN R . The first 
layer is the input layer, the input training data are a series 
of two dimensional space-time coordinates, and the 
format is shown as Equation (9). the w is the width of the 
CLT shear wall, and is 175 mm in this case; Tt is the 
terminal time of analysis, and is 368 days in this case. 
Equation (10) defines the hidden layer, where lN is the
nonlinear map for lth hidden layer, lW and lb are the 
weights and biases of the transformation. They are also 
trainable, without being predefined. They are updated to 
be appropriate for each layer to achieve more accurate 
prediction. l is the activation function acting on a vector 

element-wise. The output of each hidden layer is the 
input of the next hidden layer. The output layer is a fully 
connected layer, and the output of the prediction can be 
generated through Equation (11).
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The obtained output could then be used for the 
calculation of the loss function. The NN is trained by
minimizing the loss function.

The activation function
The hyperbolic tangent function, shown as Equation (12),
is chosen as the activation function in this research.

tanh( )
x x

x x

e ex
e e

The tanh activation function with a smooth gradient can
prevent the abrupt gradient model training. Figure 3
shows the graph of the function and its gradient. As
shown in the graph, the function outputs values in range 
(-1,1), and are symmetrical around zero, which helps 
faster convergence. Additionally, the tanh activation
function has high gradient values around zero, resulting 
in higher updates in the weights of the network and big 
learning steps.

Figure 3 the graph of the activation function

The loss function

Equation (2) presents the composition of the loss function
for a PINN model. In this research, the moisture content 
of two positions of the CLT shear wall was monitored,
and the boundary condition can be calculated through 
Equation (5) and Equation (6). Thus, the residuals of the 
training data, the boundary conditions and the partial 
differential equations can be used for training the NN.
However, the initial moisture content distribution of the 
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CLT shear wall was unclear, the initial conditions can’t
be determined for training the NN.

The initial moisture content distributions of all the tested 
CLT shear walls were assumed to be the same in previous 
research and were 12.7% at all the points [6]. However, 
the monitored results present the moisture difference 
among the same positions of the three specimens. The 
moisture content at different points of the CLT shear 
walls also can’t be the same. The assumed initial 
moisture content is inaccurate and will influence the 
prediction results.

Considering the available data, the loss function is
established and it consists of three parts: the residuals of 
the training data uL , the residuals of the boundary 

conditions ub
L and the partial differential equations fL , as 

shown in Equation (13).

( , ; , ) u u f f u ub b
L x t D s L L L

Where, ub
, f and u represents weights of each 

residual. Then the physical information residuals of the 
prediction results were obtained through the automatic 
differential algorithm and served as a regular term 
constraint in the loss function.

Furthermore, the diffusion coefficient (D) and surface 
emissivity (S) are related to the moisture content u. The 
moisture content u has different values, resulting in 
different values of the two parameters at different points.
Thus, the determination of the two parameters requires a
large amount of calculation. However, PINN shows great 
advantages in solving inverse problems. The optimal 
solution and parameter values can be obtained 
simultaneously by minimizing the loss function. In this 
case, the two parameters were set trainable, avoiding 
complex and inaccurate calculations based on empirical 
formulas. The gradient descent algorithm was applied to 
train the neural network connection weight parameters 
and deviation vectors until the residual reached the 
convergence condition.

3.3 TRANSFER LEARNING

The training data has characteristics of small sample and 
sparseness, leading to easy over-fitting, poor 
generalization ability and limited application scope of 
machine learning models in the engineering fields. This is 
also true for the case in this research. The transfer learning 
methods can apply the existing knowledge to a related 
new area, and get a good training model without 

requirements of abundant training samples. Figure 4
shows the schematic diagram of transfer learning.

Figure 4 the schematic diagram of transfer learning

In this research, to achieve good prediction with fewer 
data samples. transfer learning was also applied. The NN 
was trained with one CLT shear wall first. Based on the 
trained network, models for predicting other walls were 
trained and verified. 

4 TRAINING PINN

4.1 DATA PREPROCESSING

The input data used for training the PINN model contains 
the moisture content airu and u , each corresponding to
the ambient environment and the one monitored at 
specific positions. However, the two series of input data 
highly exceed the range (-1.7,1.7), where the activation 
function presents nonlinearity. Moreover, the airu
obtained through Equation (6) is higher than the moisture 
content with the timber. This will result in problems 
including the small weight of the NN, invalid neuron 
initialization, large gradient, improper learning rate and 
unequal roles of the input data in the analysis process.

As mentioned in section 3.2, big learning steps can be 
achieved around zero. Thus the data is preprocessed 
through normalization before training the NN.

4.2 NN SETTING AND THE APPLICATION 
OF TRANSFER LEARNING

The establishment of the NN has been illustrated in 
Section 3.2. The moisture diffusion analysis was first 
conducted on W1. A total of four hidden layers were 
contained, with three  neurons in each hidden layer. Adam 
optimizer was applied, the learning rate was 0.001 and the 
number of iteration is 600.

The moisture content of the tested CLT shear walls were 
monitored over 1 year, the training model faces challenges 
of small data. However, the prediction models of the three 
shear walls have the same forms of input and output, only 
differing the training data, thus the transfer learning could 
achieve training the model with small data samples. 20% 
and 35% of the tested data of W1 were used to train the 
NN for predicting the moisture diffusion. Results indicate
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satisfactory results can be achieved when 35% of the 
tested data were used for training. The trained NN was 
then transferred to W2 and W3, only 15% of the tested 
data were used for training the NN for each shear wall.

5 PREDICTION RESULTS

The prediction results of the PINN model were compared 
with the numerical simulation and experimental results. 
The numerical simulation method was proposed in 
previous research[6]. Figure 5~10 shows the comparison 
between the two prediction methods and the experimental 
results of the two positions of each shear wall.
Considering the different initial moisture content of the 
tested shear walls, the moisture content values rather than 
the relative values were compared.

Figure 5 Results comparison of W1-30

Figure 6 Results comparison of W1-45

Figure 7 Results comparison of W2-30

Figure 8 Results comparison of W2-45

Figure 9 Results comparison of W3-30
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Figure 10 Results comparison of W3-45

The experiment data exhibited minor fluctuations 
resembling small saw-tooth patterns at early time points
due to the intensive measurement of moisture content in 
the experiments. Although the other two methods didn’t
show the small saw-tooth patterns, the accuracy and 
effectivity were validated [6]. The MSE of different 
methods for each tested position were calculated, as 
shown in Table 1. The MSEs of the PINN model were all 
smaller than those of the numerical models, indicating the 
good performance and higher accuracy of the PINN 
model.

Table 1 The MSE of two methods

Numerical simulation PINN model
W1-30 0.458 0.063

W1-45 0.510 0.130

W2-30 0.555 0.132

W2-45 0.228 0.054

W3-30 0.499 0.139

W3-45 0.593 0.114

6 – CONCLUSION

A moisture diffusion model was established based on the 
physics-informed neural networks. The model was 
applied to three CLT shear walls, which have been 
monitored the moisture content for over one year.
Considering the small data sample, the model was first 
trained with the tested data. of W1. Then transfer learning 
was applied, and the prediction models for another two 
shear walls were trained based on the NN trained for W1. 
The prediction results of the PINN model were compared 
with the results of the experiment and numerical model 
proposed in previous research. The PINN model can 
avoid complex mesh generation and determination of the 
unknown parameters contained in the models. Results 
show the PINN model agrees well with the experiments.
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