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ABSTRACT: This research develops a innovative multi-fidelity approach based assessment method to conduct
comprehensive thermo-mechanical analysis of glulam timber connections exposed to standard fire conditions. The
framework is specifically designed to integrate low-fidelity features derived from finite element models with high-fidelity
experimental data. This integration allows for the efficient utilization of both data types to achieve a rapid and accurate
prediction across the entire domain, significantly improving the prediction accuracy and reducing computational costs.
The heat transfer within the wood is analyzed based on the results of finite element models (low-fidelity model database)
and experimental data (high-fidelity model database), and temperature-dependent properties such as thermal conductivity,
specific heat capacity and density are determined. Variou factors such as bolt count, diameter, beam thickness, wood
density and edge distance are taken into account to predict temperature distribution within connections. Additionally,
using Johansen’s yield theory, load-bearing capacity was analyzed to determine fire resistance of connections,
establishing a comprehensive understanding of their structural resilience in fire scenarios. This approach provides analysts
with accurate connection data while significantly reducing the time and computational resources required, enhancing the
efficiency of structural fire safety evaluations.
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1 -INTRODUCTION temperatures. The thermo-mechanical coupling model

uses finite element methods to mechanically simulate the
Fire resistance in timber structures is currently a focal connections, incorporating temperature data to reflect
point in structural design and research. However, existing changes in material properties due to heat exposure.
standards offer limited guidance on calculating the fire Additionally, fire resistance models for connections can
load-bearing capacity of glulam timber connections, also be computed -using mechanical analysis, which

highlighting a need for further investigation. The fire . L

. o . . . requires preliminary temperature field results. For
resistance of connection is typically analyzed using finite
element simulations [1], encompassing both temperature
field and thermo-mechanical coupling models. The
temperature field model calculates internal temperature

variations within the connection over time based on the

example, researchers like Palma [2], Erchinger [3], and
Racher [4] have derived fire resistance models for
connections using the Johansen yield model adapted to
temperature variations. These models provide a reference
for developing fire load-bearing capacity models for this

thermodynamic  properties of materials at varying study’s connections. However, these models, requiring
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extensive finite element temperature data, can be
computationally intensive and economically inefficient
for complex or large-scale models. This study proposes
building a probabilistic model based on parameters such
as bolt number, diameter, beam thickness, wood density
(species), and heating duration. A finite element database
for the temperature field of the connections is established,
along with the development of a deep learning algorithm
for low-fidelity data analysis and high fidelity data
analysis of the glulam timber connection[5]. This
approach aims to rapidly and accurately obtain
temperature data of the connections, enabling the
establishment of a more efficient and accurate fire load-
bearing capacity calculation model for the connections.

2- METHODOLOGY

The framework of this method can be divided into two
steps: the heat transfer model and the theoretical load-
carrying model. The heat transfer model requires a multi-
fidelity framework. This entire framework is consisted of
two sub-networks. A low-fidelity network is trained to
conduct analysis of the temperature field in glulam
timber connections using large finite element datasets.
The residual subnetwork is trained based on experimental
results to to ensure rapid and accurate acquisition of the
complete temperature data field for the connections,
enhancing both the precision and speed of engineering
evaluations. theoretical load-carrying model,
Johansen’s model is used to calculate the load-carry
capacity at an angle of 6 based on the integral of

In

embedment strength along the bolt line. The temperature
field is obtained from the heat transfer model in the first
step. The ultimate moment strength is defined when the
farthest bolt reaches its ultimate state.

2.1 A multi-fidelity framework

The proposed framework consists of a low-fidelity
subnet and a residual subnet, as illustrated in Figure 1.
The input parameter vector is defined as p = (d, n, p, b,
e), representing the bolt diameter (mm), number of bolts,
wood density (kg/m?), beam thickness (mm), and edge
distance (mm), respectively. The output is the three-
dimensional temperature field T(m), where m denotes (X,
y, z, t). Here, (x, y, z) are the sectional coordinates of the
node, and t € [0, 3600] s represents the fire exposure
duration.

The low-fidelity subnet is constructed using a standard
DeepONet architecture, consisting of a Branch Network
and a Trunk Network. In the Branch Network, a 5-layer
fully connected neural network with 256 neurons per
layer and Swish activation functions is employed to
encode the input parameters p into a 128-dimensional
feature vector b(p). Meanwhile, the Trunk Network is
designed as a 3-layer fully connected network, where
normalized spatiotemporal coordinates are transformed
into a corresponding 128-dimensional feature vector. The
final temperature field prediction is obtained through the
inner product of these feature vectors.
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Figure 1. A multi-fidelity framework

The Residual Subnet is designed with a lightweight U-
Net architecture, taking the low-fidelity prediction TLF
as input and producing the residual field AT = THF —
TLF based on the differences between high-fidelity
results (test) and low-fidelity predictions (simulation).
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The input augmentation approach proposed in by Lu et al.
[6] is used , and the low-fidelity prediction TL(p)(m) is
appended to the trunk net inputs to make the residual
operator AT easier to learn, ensuring the effective

preservation of fine-grained information throughout the



network. It consists of four down-sampling and up-
sampling stages, with the number of channels
progressively increasing from 64 to 128, 256, and finally
512.

2.2 A load-bearing capacity model based on the
temperature field

Figure 2 shows the internal forces of bolted timber
connections under coupled shear force (¥x) and bending
moment (Mx).

The vertical load Vi acting on the connections is assumed
to be evenly distributed among the bolts at the beam end.
The shear force resisted by a single bolt, denoted as F¥,
can be expressed as:

F, (2)

The bolt located farthest from the rotation center
experiences the highest load and is selected for individual
analysis. This bolt resists the bending moment in the
connections region, generating a reaction force Fwm,i,
while also resisting the shear force with a reaction Fv. The
resultant force Fri forms an angle with the wood grain
direction, which can be expressed as:

Fy 1sinoy +F
0, =arctan(—e—— 3)
Fy 1cosay
The embedment strength of the wood under the inclined
grain, denoted as feo1, can be determined using the

following equation:

f,p=0.082x(1-0.01d)Xp (4)
feoo=fe0/Koo )
fep1="Feo/ (Koosin®6; +cos*6;) (6)
kgo=1.35+0.015d @)

Where feo represents the embendment strength of the
glulam parallel to the grain, d denotes the bolt diameter
of the wooden beam, p is the density of the glulam, and
feoo refers to the embendment strength perpendicular to

the grain.
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Figure 2. Internal forces of bolted timber connections
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Figure 3. Calculation process

The calculation process consists of three main steps. First,
a finite element heat transfer model is used to determine
the temperature field distribution along the bolts in the
connection region. Next, using the selected bilinear
model for the embedment strength of the wood dowel
slots, the embedment strength at each time step is
obtained by applying the temperature field distribution
and the corresponding strength reduction factors from the
bilinear model. Finally, the shear capacity of a single bolt
in a single shear plane is calculated by integrating the
bearing strength along the bolt distribution and applying
the Johansen yield model. The detailed process is
illustrated in Figure 3.

3 -RESULTS

The low-fidelity dataset is generated using the ABAQUS
finite element software, employing parametric modeling
and batch processing techniques to ensure efficient data
production. A parameterized template model is
developed using Python scripts, with the bolt diameter
(d), number of bolts (n), wood density (p), beam
thickness (b), and edge distance (e) defined as variable
parameters. The ABAQUS CAE interface is used to
dynamically adjust the geometric dimensions and
material properties.

A total of 3300 parameter combinations are generated to
produce temperature field data, stored in ODB files. Post-
processing scripts are then applied to extract the time-
series temperature data at the connection region.

Figure 4 illustrates a typical finite element model of the
joint, utilizing C3DS8T elements (8-node linear heat
transfer hexahedral elements). Heat conduction and
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radiation are simulated on the surfaces of both the wood
and steel components, with a refined mesh applied
around the bolt contact areas to improve accuracy.

* LE L

Figure 4. Heat conduction and thermal radiation region

The high-fidelity dataset is obtained from furnace fire
tests, as shown in Figure 5. The experimental parameters
are carefully aligned with those used in the simulations
to ensure consistency. Thermocouples are used to capture
the temperature field data during the tests.

Figure 5. Fire tests

The predictions of the Low-Fidelity Subnet on 300
independent test datasets demonstrate a coefficient of
determination (R?) of 0.97, indicating that it can function
as a surrogate model for numerical simulation.

After training the multi-fidelity model with five sets of
experimental data, the R? score of the multi-fidelity
DeepONet prediction results reaches 0.85, and the
prediction accuracy is significantly improved compared
to the 0.79 R? score obtained by directly using the
surrogate model.

4 — CONCLUSION

The fire resistance of these connections is crucial for the
overall fire load-bearing capacity of timber frame
structures. Typically, the fire load-bearing capacity of
these connections is calculated using finite element
methods, a process that can be time-consuming and
computationally demanding due to the detailed modeling
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and extensive calculations required. This project aims to
streamline this process by employing deep learning
techniques to rapidly acquire temperature field data for
timber connections. Based on this temperature data, a fire
load-bearing capacity model for the connections is
developed. This approach enhances predictive accuracy
and structural safety assessments.

5 - REFERENCES

[1] Audebert M, Dhima D, Taazount M, Bouchaira A.
Numerical investigations on the thermo-mechanical
behavior of steel-to-timber connections exposed to
fire [J]. Engineering Structures, 2011; 33(12):3257-
3268.

Palma P, Frangi A. Modelling the fire resistance of
steel-to-timber dowelled connections loaded
perpendicularly to the grain [J]. Fire Safety Journal,
2019, 107: 54-74.

Erchinger C, Frangi A, Fontana M. Fire design of
steel-to-timber ~ dowelled  connections  [J].
Engineering Structures, 2010; 32(2):580-589.
Racher P., Laplanche K., Dhima D., et al. Thermo-
mechanical analysis of the fire performance of
dowelled timber connection [J].
Structures, 2010, 32(4):1148-1157.
XuC,Cao BT, Yuan Y, et al. A multi-fidelity deep
operator network (DeepONet) for fusing simulation
and monitoring data: Application to real-time

(2]

(3]

(4]
Engineering

(3]

settlement prediction during tunnel construction[J].
Engineering Applications of Artificial Intelligence,
2024, 133: 108156.

Lu L, Pestourie R, Johnson S G, et al. Multifidelity
deep neural operators for efficient learning of
partial differential equations with application to fast
inverse design of nanoscale heat transport[J].
Physical Review Research, 2022, 4(2): 023210.

(6]





