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ABSTRACT: All over the world, the movement for the mid- and high- rise wooden building has been activated to aim 
for sustainable society. To promote these activities, the dynamic behavior of such buildings should be cralifised and an 
analysis method for such building should be verified. In this study, we targeted the full-scale shaking table test of 5-story 
wooden structure and analytical study was conducted. But, it is difficult to conduct analysis accurately and verification is 
time-consuming. One of verification method of the analysis is parameter identification. At present, the paremeter 
identification has been applied to detailed analysis model for buildings. This needs a lot of time if the common 
identification method is used, so we applied the efficient parameter identification method using quality engineering and 
interpretable machine learning “SHAP”. Adopted method is based on comprehensive parameter search using quality 
engineering and “SHAP” is useful for efficient parameter search to evaluate parameter influence. The identification results 
showed good agreement with experiental results. 
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1 – INTRODUCTION 

To promote the movement to use timber, the expansion 
of the wooden building market has been accelerated. For 
example, Cross Laminated Timber (CLT) is focused as 
the material for mid- and high- rise wooden buildings 
recently and many reserches studies about them. In 
addition, Many shaking table tests were conducted on 
wooden buildings using various construction methods [1]. 
These tests clarified the seismic performance of the 
buildings and another objective is verification of 
numerical analysis. If an analysis method that agrees with 
the experiment and phenomenon, the seismic 
performance can be predicted without experiment and 
seismic design methods can be established. In this way, 
it necessary to verify analysis model and parameters to 
reproduce the experimental results. To promote wooden 
building market for mid- and high- building, it is 
important to verify analysis method for such building.  

We established the parameter identification method 
using quality engineering and interpretable machine 
learning “SHAP” [2],[3]. Parameter identification is one 
of effective ways of validation for analytical models and 
input parameters. 

Detailed analytical models for CLT buildings have been 
presented in Japanese CLT manual [4], and recently, 
simplified analytical models have been developed [5]. In 
order to conduct more accurate analysis for medium- and 
high-rise wooden buildings, it is necessary to verify the 
analytical model for medium- and high-rise wooden 
buildings with the experimental results. 

In this study, we tried to identify the parameters of 
detailed analysis model by applying the parameter 
identification method using interpretable AI and 
orthogonal array to a full-scale shaking table test of a 5-
story wooden building. 
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2 –MEHOD

2.1 OUTLINE OF EXPERIMENT

The target experiment was a shaking table test of a five-
story wooden building conducted in 2022 [6]. Figure 1
shows an overview of the test specimen. The building is 
a five-story structure with a total floor area of 439.5 m2,
floor plan dimensions of 8.19 m x 12.285 m for the first 
through fourth floors and 5.005 m x 12.285 m for the fifth 
floor, with a maximum height of 16.7 m. 

In the test, the seismic waves shown in Table 1 were 
input in sequence with acceleration control in order to 
determine the seismic performance of the specimen 
during extreme earthquakes.

Figure 1. Over view of specimen.

Wave PGA(gal)

X Y Z

Canogapark 100% 349 (EW) 412 (NS) 479 (UD)

Predicted Earthquake in 
Tokyo metropolitan 
area 100%

326 (NS) 400 (EW) 32 (UD)

BSL Y 100% - 579 -

BSL X 100% 579 - -

JMA Kobe 100% 617 (EW) 818 (NS) 332 (UD)

K-NET Ojiya 100% 1314 (NS) 1144 (EW) 820 (UD)

Table 2. PGA of input waves.

2.2 NUMERICAL ANALYSIS

The analysis model was constructed in numerical 
analysis software “wallstat” [7]. In “wallstat”, detailed 
model is able to be constructed, and joints and walls are 
modelled as springs to reproduce member’s behavior
such as uplift deformation and shear deformation. Figure 
2 shows the outline of analysis model. The walls were 
modeled with brace-substituted springs, and the column 
leg connections and beam end connections were modeled 
with tensile and rotational springs (Figure 3), and the 
restoring force characteristics were set based on the 
results of each element experiment. Floors were modeled 
as brace-substituted springs, as were the walls. Viscous 
damping was set at 2%, proportional to the instantaneous 
stiffness, and zero damping was set when the 
instantaneous stiffness was negative.

(a)Overview (b)Beam and truss elements

Figure 2. Analysis model.

(a) Wall and Floor (Braced springs) (b) Brace

(c) Joint

Figure 3. Details of elements.
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2.3 PARAMETER IDENTIFICATION

To get opimal parameters to reproduce the experimental 
behavior, we adopted parameter identification method 
using orthogonal arrays and interpretable machine 
learning suggested by Tokikatsu Namba et al ([2],[3])
shown as fig. 4.

First, various input parameters are created (1. Definition 
of the parameters). These parameters are set for the 
backbone curves of the springs in the analysis model, and 
multiple analyses are conducted (2. Numerical analysis). 
The results of the multiple analyses are compared with 
the experiments, and the goodness of the results and 
analysis model will be verified. In addition, the 
correction factor range are analyzed. (3. Comparison). 
Then, the parameter ranges are narrowed down by 
reviewing the range using quality engineering and 
interpretable machine learning (4. Narrowing down the 
parameter range). Data assimilation was attempted by 
repeating these cycles multiple times. In addition, this 
method was verified by interpretable machine learning.

Figure 4. Outline of parameter identification [3].

Before identification, the parameters were defined 
based on the results of each element experiment (standard 
curve). The search range was set to be 0.5 to 2.0 times the 
stiffness and bearing capacity of the standard curve,
which is a wide search range. 33 parameters were varied 
by 16 levels, and 512 combinations are planned. The 
orthogonal table allows 512 combinations of skeletal 
curves and history characteristics to be planned, and time 
history response analysis were conducted using JAXA's 
supercomputer [8].

The characteristic values of beam and column members, 
tension and compression springs, walls and floors are 
target parameters of identification. The characteristic 
values are based on the skeleton curve (e.g., Figure 4) 

determined from elemental tests of each element, and the 
characteristic values of the skeleton curve are multiplied 
by a correction factor.

(a) double-sided Plywood wall

(b) Lattice wall

Figure 5. Examples of backbone curve of wall (910mm x 910m).

Parameters of the tensile springs for the joints were 
fixed values, and they were defined based on measured 
datas in the shaking table tests. For other datas of tensile
springs, which were not measued in the test, the 
parameters were target for identification and multiplied 
by a correction factor to vary the stiffness and capacity of 
the skeleton curve (T). The same applies to compression 
springs (C) and floors (F). The characteristic values of 
members such as columns and beams were varied by 
multiplying Young's modulus E, which was set according 
to the material grade of the member, by a correction 
factor. Walls are considered to be the most influential 
parameter in the results of the analysis, so a detailed 
combination of variations was created. Backbone curve 
of wall was defined as a bilinear + slip skeleton curve. 
The curve was varied up and down by multiplying the 
stiffness of the slip skeleton curve (K_s) by a correction 
factor, and the bilinear properties were planned by 
multiplying the initial stiffness (K_b1) and secondary 
stiffness (K_b2) by a correction factor to combine 
parameters.

Figure 6. Backbone curve multiplised by correction factors.
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An overview is shown in Figure 6. The plywood single-
sided wall, double-sided wall, lattice wall, and CLT wall 
used in the specimen were varied by multiplying 
correction factores in the x- and y-directions separately. 
The correction factors ranged from 0.5 to 2.0 and were 
equally divided into 16 levels. Since there were no 
elemental experiments on beam-column joint, the 
rotational spring was based on an elemental experiment 
on the rotational performance of holddown [7], and the 
elastic spring was set based on its initial stiffness 
(RK=61.5 kNm/rad). Since the original performance is 
unknown, a larger range of correction factors was also 
used, ranging from 0.5~10 times. During parameter 
identification, if the appropriate analytical model is not 
set up, the identified parameters will be unrealistic values. 
In the initial parameter identification, the rotational 
performance between the column and beam (strong axis: 
RX, weak axis: RY) and the wall foundation (Rbase) was 
not considered, and the difference between the 
experimental and analytical results did not decrease 
unless wall performance was increased. Therefore, it was 
decided to consider the rotational performance, and the 
initial stiffness RK (=61.5 kNm/rad) in the rotational 
performance element experiment of the holddown was 
set as the rotational performance between the column and 
beam (strong axis: RX, weak axis: RY) and the wall 
foundation (Rbase).

Focusing on the inter-story drift and uplift deformations 
of walls in the full-scale shake table tests, the difference 
between the analytical and experimental results were 
estimated for each story. Hideo Muroi et al. [9] compared 
some model validation criteria, but there a few studies 
about validation criteria. Based on the study, we adopted 
“index of agreement” as model validation criteria.

The difference between the analytical and experimental 
results was evaluated in terms of the difference in 
maximum values and the difference in time history 
response results. The difference of the maximum value is 
the difference between the experimental and analytical 
results of the maximum interlaminar deformation of each 
layer divided by the experimental result, and the smaller 
the value is, the smaller the difference between the 
analytical and experimental results is. The index of 
agreement [9] was calculated to evaluate the difference 
between the analytical and experimental results. The 
analytical results to be evaluated are the inter-story drift 
of all layers in 1-4 streets in the x-direction and 1-3 streets
in the y-direction. index of agreement is defined by 
Equation (1).

௝݀ = 1− ∑ (݇)ݕ| − ∑ො(݇)|௝ே௞ୀଵݕ (݇)ݕ|) − |തݕ + (݇)ොݕ| − ത|)௝ே௞ୀଵݕ (1)

Where ݕ(݇) is Experimental result in ݇ , (݇)ොݕ is 
analysis results in ݇, തݕ is average value of experimental 
results. where j is an arbitrary positive integer, j = 1 is 
often used so j=1 is adopted in this study.

The maximum value is 1 and the minimum value is 0. 
The closer the maximum value is to 1, the smaller the 
difference between the analytical and experimental 
results is. Based on the calculation results for the final 
excitation, the parameter search range was narrowed 
down.

The factorial effect diagram in quality engineering was 
used to evaluate the analytical results in past studies (e.g., 
[2]). The diagram was used to identify input parameters 
that are sensitive to output parameters and to analyze the 
range of parameters that reduce the difference between 
experimental and analytical results. The authers tried to 
review the process using SHAP in ref[3] and the method 
was applied in this study.

First, to use SHAP, 512 analysis cases were learned by 
machine learning method Light Gradient Boosting 
Machine (LightGBM [10]). LightGBM is a powerful 
gradient boosting framework that is designed to be 
efficient, scalable, and easy to use. Kang et al. [11]
presented a comprehensive comparison of 11 ML models. 
The results indicated that Gradient Boosting Method 
(GBM), Extreme gradient boosting (XGBoost), Random 
Forest (RF), and Decision Tree (DT) had a good accurate 
prediction compared with other ML method considered. 
Then, LightGBM method which is accelerated GBM 
method was applied in this study. 512 cases were learned 
by LightGBM method, after that, parameter study was 
conducted with SHAP. SHAP is often used as XAI, 
which is proposed to solve the long criticized black-box 
issue of ML models. SHAP is a collection of explainers 
based on a game theory approach that estimates Shapley 
values from an absolute average of the feature 
contributions over several simulations. Since the original 
ML model is complex, this approach uses additive feature 
importance measures based on a linear explanation 
model that is a linear combination of binary variables 
expressed by equation (2).

(ݔ)݂ ≈ (ᇱࢠ)݃ = ߮଴ +෍߮௜ࢠᇱெ
௜ୀଵ

-(2) 
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where ݂(ݔ) is the original model and ݔ is the original 
input feature. The explanation model uses ݔᇱ as a
simplified input feature and links it with a mapping 
function ݔ = ℎ௫(ݔᇱ) , while local methods attempt to
guarantee that ݃(ࢠᇱ) ≈ ݂൫ℎ௫(ࢠᇱ)൯ whenever ݖᇱ ≈ ᇱݔ .
The value ߮௜ is the Shapley value which is expressed by
equation (3).

߮௜(݂, (ݔ = ෍ !|ᇱݖ| ܯ) − |ᇱݖ| − !ܯ!(1 ( ௫݂(ݖᇱ)௭ᇲ⊆௫ᇲ − ௫݂(ݖᇱ ∖ ݅))
-(3)

When three desirable properties (local accuracy, 
missingness, and consistency) are satisfied. |ݖᇱ| is the
number of non-zero entries in ݖᇱ, and all ݖᇱ vectors are a
subset of ݔᇱ. More information regarding SHAP can be
found in S.M. Lundberg et al’s study [12]. In this study, 
we used python library “SHAP” published in github [13].

After the parameter identification, the analysis results 
showed good agreement with the experimental results. 
Detailed results are described in the conference. For more 
details on the parameter identification process, please 
refer to [2] and [3].

3 – IDENTIFICATION RESULTS

Figure 7 shows a comparison of the analytical results of 
the maximum inter-story drifts of all layers before and 
after parameter identification. Identified analysis shows 
the smallest difference in the time history response 
analysis results for K-NET Ojiya. From (a), the results 
for the JMA Kobe in X direction show that the initial
analysis results overestimated deformation in all layers, 
while analysis after identification for layers 3 to 5 are in 
agreement with the experimental results. From (b), the 
maximum drift of layer 5 is overestimated during K-NET 
Ojiya, but the difference between the experimental and 
analytical results is small for the other layers. From (c), 
the maximum drift in Y direction is overestimated in 2
and 3 stories even after identification. The shape of the 
distribution of the maximum drift was close to the 
experimental results. Figure 8 also shows the analytical 
results of first story during K-NET Ojiya after parameter 
identification. From Figures 7(a) and 7(b), the load-
deformation relationships in X and Y directions generally 
agreed with the experimental results. From the results of
(c)-(d), it is confirmed that the drifts in each street are 
generally reproduced in the analysis. Similar results were 
obtained for the other layers, but some results 
overestimated the deformation. 

(a)JMA kobe 100 (X) (b)K-NET Ojiya 100 (X)

(c)JMA kobe 100 (Y) (d)K-NET Ojiya 100 (Y)

Figure 7. Maximum inter-story drifts of all layers.

(a)X direction (b)Y direction

(c)Y direction, street1

(d)Y direction, street2

Figure 7. Analysis results in first story.
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4 – CONCLUSION

Parameter identification using interpretable machine 
learning and orthogonal array for a detailed analysis
model based on the results of shaking table tests of full-
scale 5-story wooden structure.

After the parameter identification method, analysis 
results were in agreement with the experimental results, 
confirming the effectiveness of the parameter 
identification method using interpretable machine 
learning and orthongonal array in the detailed analysis
model. On the other hand, the results of JMA Kobe 
excitation overestimated the drifts of 2- and 3-story,
which is an issue to be addressed in the future.

By increasing the performance of some parameters, it 
was confirmed that the detailed analysis model could 
generally reproduce the experimental results. 
Quantitative analysis of the identification results will be 
the subject of future work. Although this report is limited 
to a full-scale shaking table test, it presents a method to 
review the analytical model and parameters through 
parameter identification based on the test.
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