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ABSTRACT: For some time now, wood has offered itself as an alternative to other modern construction materials, and 
has become the material of choice for structures, mainly because of its renewable nature, durability and ease of shaping.
However, once in service, even at room temperature and under low stresses, it deforms and faces the problems of creep
and recovery. The aims of this work is to model and predict the viscoelastic deformations of tropical wood by a
rheological approach based on fractional calculus theory. Frist, Zener fractional model was used to elucidate these 
phenomena. The simulations show that the proposed model fit the creep experimental data with an average reliability of 
96% and the recovery process  with a reliability of 99%. The optimal parameters of this model, determined through an 
optimization algorithm, exhibit sensitivity to the stress level. To address this issue and enhance the predictive capability 
of the model, nonlinearities are incorporated into the fractional model, resulting in modified versions that remain 
applicable across various stress levels.
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1 – INTRODUCTION

In recent years, the demand for wood materials in 
construction industry has grown considerably. Thanks to 
its low density, the wood material offers a better strength-
weight ratio and its cellular structure makes it light, thus 
reducing the overall mass of the structure while keeping 
it very solid. According to a study carried out by the 
Passive House institute in 2015, 55% of buildings are 
certified to be built in wood material [1], which 
demonstrates the great potential of this material by giving 
it the place of best candidate against its competitors due 
to its mechanical, thermal and ecological qualities. Once 
in service in a structure,  wood material is subject to a set 
of constraints (environmental constraints, external and 
internal loads, etc.) which push it to exhibit faulty 
behaviors such as creep and recovery [2, 3], that cause
damage , progressive ruin and breakage of the structural 
element. It is becoming urgent to find ways and means to 
control these harmful behaviors in order to guarantee the 
safety of wooden structures. Tropical woods are also 
affected by the issue of long-term deformation. Although 
numerous studies have already characterized their 
physical and mechanical properties [4-6], the need to 
model their viscoelastic behavior remains essential [7].  
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Rheological modeling is considered today as a solution 
that provides satisfactory results [8]. Fractional 
rheological models offer the advantage of preserving the 
material's memory effect by capturing its behavioral 
history while significantly reducing the number of model 
parameters, thereby lowering simulation and design costs
[9]. Recently, Nguedjio et al. [10] and Atchounga et al.
[11] have employed this category of models to describe
the creep and recovery behavior of two tropical wood
species. A comparison with classical rheological models
reveals the superior performance of fractional rheological
models. Furthermore, additional studies using these
models corroborate these findings [12-14].

A key observation across these studies is that the model 
parameters are influenced by the stress level, which 
compromises their predictive capability. Ideally, a truly 
predictive model should maintain consistent parameters 
regardless of the applied stress. To address this 
sensitivity, nonlinearities whether exponential, 
logarithmic, or linear are often introduced into the model
[15-17].

This paper aims first to determine the optimal parameters 
of the constant-order fractional Zener model by 
comparing it with experimental creep-recovery data 
obtained through four-point bending, using the 
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Levenberg-Marquardt algorithm. Next, it seeks to 
introduce an appropriate nonlinear formulation to 
develop a truly predictive model. 

Following this introduction, the paper proceeds with a 
presentation of the mathematical model, a description of 
the material and experimental protocol, and an analysis 
and discussion of the results. The paper concludes with 
final remarks and perspectives for future research.

2 – BACKGROUND

This section presents the fractional rheological model
and numerical method used in this work to calculate the
relevant parameters of the model.

2.1 FRACTIONAL ZENER MODEL

To form the  Zener fractional model, a spring is 
connected in serie with a basic fractional Kelvin model 
(Fig.1) [7]. The fractional Kelvin-Voigt model is derived 
by replacing the dashpot in its classical counterpart with 
an element called spring-pot, which imparts the 
fractional nature to the model. The behavior of this 
element is governed by a law expressed in terms of the 
fractional derivative, as shown in Eq. 1:(ݐ)ߪ = ൯(ݐ)ߝఉ൫ܦ.߭ 0 < ߚ < 1          (1)

where (ݐ)ߪ represents the stress history, (ݐ)ߝ the strain 
history, ߭ the fractional viscosity, ܦఉ the fractional
derivative and ߚ the fractional order.

An electromechanical analogy analysis of the model in 
Fig. 1 yields the following differential equation 
describing its temporal behavior:ܧ.ܦఉ൫(ݐ)ߝ൯ + ܾ. (ݐ)ߝ = ൯(ݐ)ߪఉ൫ܦ(2) + ,(ݐ)ߪ.ܽ

where ܽ = ாబାாభజ and ܾ = ாబாభజ . ܧ and ܧଵ are the
elastic moduli of the model. 

Under constant stress, the solution of the fractional 
differential equation (Eq. 1), expressed in terms of 
compliance function J(t) and derived using the Laplace 
transform method, is given by the following equation:(ݐ)ܬ = ఈ,ଵܧ ቀ− +ఉቁݐ ܽ. ఉݐ .ܽ−ఈ,ఈାଵ൫ܧ. ఈ,ణܧఉ൯.       (4)ݐ is the Mittag-Leffler function, defined by the
following expression :

Under constant stress history, the solution of the 
fractional differential equation (Eq. 2), expressed in 
terms of compliance and derived using the Laplace 
transform method, is given by the following equation (ݐ)ܬ: = ܬ + ଵܬ ൬1 − ఈ,ଵܧ ቀ− ாభజ ఉቁ൰ݐ   (3)

where ܧఈ,ణ(. ) represents de Mittag-Leffler function [18]
and ܬ = ଵாబ , ଵܬ = ଵாభ.
2.2 VISCOELASTIC BEHAVIOR

This paper investigates the viscoelastic behavior of 
creep-recovery. Initially, the material is subjected to a 
constant stress , maintained over time for a durationߪ ݐ
, representing the creep phase. Upon reaching ݐ, the
stress is spontaneously removed, and the material 
transitions into the recovery phase. The stress state at 
each moment during this viscoelastic process is 
expressed as follows:

(ݐ)ߪ = ቊߪ(ݐ)ܪ ݂݅ ݐ < (ݐ)ܪ൫ߪݐ ݐ)ܪ− − )൯ݐ ݂݅ ݐ > ݐ   (4)

H(t) is the Headviside function.

The viscoelastic response to the applied stress is 
described by the following system of equations:

(ݐ)ߝ = ቊߪ (ݐ)ܬ ݂݅ ݐ < (ݐ)ܬ൫ߪݐ − ݐ)ܬ − )൯ݐ ݂݅ ݐ > ݐ (5)

with J(t) is the compliance function of the model defined 
by Eq. 3. 

2.3 PARAMETERS DETERMINATION

The optimal model parameters are identified by fitting 
the experimental data (detailed in Section 4) to the model 
using the Levenberg-Marquardt optimization algorithm. 
The numerical scheme for computing these parameters in 
the MATLAB environment is illustrated in Fig. 2.

3 – PROJECT DESCRIPTION

The plant material used in this study is the tropical wood 
species Sapelli (Entandrophragma cylindricum).
Characterized by a straight, cylindrical trunk (see Fig. 3),
the Sapelli tree is commonly employed in structural and 
shipbuilding applications. The samples analyzed were
sourced from the tropical forests of southern Cameroon.
The samples were cut to dimensions of 360 mm in length 
and 20 mm × 20 mm in cross-section, then conditioned 
in an environment with a relative humidity of 65% ± 5%
and an ambient temperature of 20°C ± 2°.

Figure 1. Fractional Zener model.

ߚ
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4 – EXPERIMENTAL SETUP 

In this work, experimental wood deformation data are 
obtained through a four-point bending test (Fig. 4).
Following the French Norm NF B 51-016, the tests 
involve placing a specimen on two simple supports and 
subjecting it to two loads concentrated at these supports, 
each applied at an equal distance from them. Initially, a 
constant load is maintained, and data regarding creep are 
gathered. Subsequently, once the creep duration has 
passed, the load is abruptly withdrawn, and the 
extensometer records deformations, reflecting the 
material’s recovery process.

The maximum stress σ applied in the central part of the 
specimen is calculated from the pressure value indicated 
by the pressure gauge, following the relationship given in 
Eq. (ݐ)ߪ : 6 = ଷ ௗ (௧)² (6)

d is the  distance between outer and inner loading points, 
P the applied load, b and h  the width and height of the 
specimen, respectively.

5 – RESULTS

5.1 EXPERIMENTAL VISCOELASTIC 
CURVES

At the end of the experimental campaign, the collected 
data enabled the representation of the complete 
viscoelastic creep recovery behavior over time through a 
deformation curve (see Fig. 5).

Figure 2. Levenberg-Marquardt algorithm.

(a) (b)

Figure 3. Tropical Sapelli wood : (a) Trunk, (b) Plane section.

Figure 4. Experimental setup.

Figure 5. Experimental viscoelastic behavior of Sapelli wood.
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This analysis was conducted for four specimen groups, 
each subjected to four-point static bending under loads 
below the failure load (FL), specifically at 6.12%, 8.58%, 
24.52%, and 31.87% of FL. The creep phase under 
constant loading lasts approximately tc = 600 minutes, 
while the recovery phase extends up to t = 2400 minutes 
for the specimen subjected to a load of 6.12% FL. Fig. 5
also reveals that the strain rate increases with the loading 
level, reflecting the material's flexibility. This suggests 
that higher loading levels could lead to the onset of 
plastic deformations.

5.2 MODELING VISCOELASTIC 
BEHAVIOR THROUGH FRACTIONAL 
ZENER MODEL

Once the experimental data are obtained, it is necessary 
to determine the optimal model parameters that best fit 
these data. This step enables us to assess the reliability of 
the proposed fractional model in simulating the 
viscoelastic behavior of tropical Sapelli wood. The 
optimization process follows the algorithm outlined in 
Fig. 2, using the objective function defined by Eq. 5 to 
capture the complete creep-recovery behavior. After
optimization, the experimental curves align with the 
model predictions, as illustrated in Figs. 6 and 7 for creep 
and recovery, respectively, for the specimen subjected to 
24.52% FL.

Initial observations indicate that the Zener fractional 
model provides a good fit to the experimental data, 
particularly during the recovery phase. However, 
capturing the creep behavior remains challenging, 
especially in the initial phase within the first 100 minutes 
after load application. These discrepancies may stem 
from numerical modeling limitations or experimental 
uncertainties related to handling and testing conditions.

In addition to the memory effect inherent in fractional 
models, which enhances their ability to represent the 
viscoelastic behavior of materials like wood, the R²
coefficient serves as a key performance indicator. The 
model demonstrates better accuracy in the recovery 
phase, achieving an R² value of 99%, while creep 
behavior is represented with an accuracy of 96%.

Another objective of the optimization is to determine the 
optimal model parameters that can be used to predict 
behavior under different loading histories. To this end, 
Tables 1 and 2 present the parameters for the creep and 
recovery models, respectively. The stress values σ (MPa) 
are computed based on the loading level using the 
formula given in Eq. 6.

Table 1: Creep parameter of Zener fractional model

σ 
(MPa)

E0 (103 
Mpa)

E1 (105 

Mpa)
߭ (106

Mpa. minఉ)

ߚ
7.4 5.73 2.79 1.05 0.45

10.31 5.25 1.47 0.56 0.44

25.0 5.21 1.80 0.58 0.37

29.4 5.31 1.40 1.28 0.25

Table 2: Recovery parameter of Zener fractional model

The analysis of Table 1 reveals that the modulus E0,
which represents the material's instantaneous response 
to loading, remains nearly unchanged despite variations 
in stress. This suggests that E0 can be associated with 
the material's intrinsic stiffness. In contrast, the other 
parameters exhibit significant variations with stress. 
The fractional order decreases as stress increases, Figure 7. Modeling recovery by Zener fractional model.

Figure 6. Modeling creep by Zener fractional model.

σ 
(MPa)

E1 (105 

Mpa)
߭ (106 

Mpa. minఉ)

ߚ
7.4 6.18 1.23 0.39

10.31 3.33 0.66 0.29

25.0 3.23 0.72 0.25

29.4 3.80 0.54 0.18
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indicating greater energy dissipation under higher loads, 
given the relationship between the fractional order and 
material stiffness [10]. Moreover, the modulus E1 and the 
fractional viscosity ߭ show irregular variations with 
stress, potentially indicating nonlinearities in the 
material's behavior. Indeed, similar disparities have been 
reported by several authors in their modeling studies of 
the viscoelastic behavior of wood and its derivatives [11,
19, 20].

The observed disparities indicate that the fractional Zener 
model is sensitive to the stress level, which impacts its 
predictive capability. To ensure reliable simulations 
under different loading conditions, the model parameters 
should be minimally or not at all affected by stress 
variations. The next subsection aims to address this issue 
by modifying the initial model.

5.3 MODIFIED FRACTIONAL ZENER 
MODEL

To propose an adjustment to the previous model, it is 
essential to understand how its parameters are influenced 
by the stress level. In this regard, Figs. 8 and 9 illustrate 
the sensitivities of the parameters E1 and ߭ to the stress 
level for creep and recovery, respectively.

Figure 8. Evolution of E1 as a function of stress.

Figure 9. Evolution of  ߭ as a function of stress.

The evolution of E1 and ߭ as a function of the stress 
reveals the presence of two local maxima, indicating that 
these variations can be effectively modeled using third-
degree polynomials of the form:ܧଵ(ߪ) = (ߪ)߭ = ଷߪܽ + ଶߪܾ + ߪܿ + ݀   (7)

The drawback of this approach lies in the significant 
increase in the number of model parameters when 
adopting such an evolution law. To align with the ideal 
of maintaining good model performance with fewer 
parameters, the literature generally favors limiting this 
type of evolution to a maximum of two parameters, 
ensuring that only one additional parameter is introduced 
compared to the initial model [17, 21].

The objective of this subsection is to identify an evolution 
function that closely approximates the previous 
polynomial function. A power function, as described in 
Eq. 8, appears to be more suitable, as suggested by the 
findings of Shimazaki et al. (ߪ)ଵܧ.[17] = (ߪ)߭ = ߪ) + ܽ) (8)

It is important to note that only E1 or ߭ will be selected 
to prevent a substantial increase in the number of 
parameters. Consequently, the newly modified fractional 
Zener model, expressed in terms of the compliance 
function, adopts either the form of Eq. 9 or Eq. 10. These 
formulations are derived from the initial expression 
presented in Eq. 3.

(ݐ)ܬ = ܬ + ߪ) + ܽ)ି ቆ1 − ఈ,ଵܧ ቀ− (ఙା)್జ ఉቁቇݐ   (9)

(ݐ)ܬ = ܬ + ଵܬ ቆ1 − ఈ,ଵܧ ቀ− ாభ(ఙା)್ ఉቁቇݐ   (10) 

In either case, we will have moved from a four-parameter 
fractional model to a five-parameter fractional model, 
with the advantage in the latter model of taking into 
account the non-linearity due to the variability of the 
wood and thus increasing the predictive capacity of the 
model.

6 – CONCLUSION

This paper introduces a modeling approach for the 
viscoelastic behavior of wood based on the mathematical 
framework of fractional calculus. The results 
demonstrate that this model effectively captures the creep 
and recovery of tropical Sapelli wood, benefiting from its 
incorporation of memory effects and fewer parameters 
compared to traditional rheological models with integer 
derivatives. Specifically, the creep behavior of Sapelli 
was simulated using the four-parameter Zener fractional
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model, achieving an accuracy of 96%, while the recovery 
was modeled with 99% accuracy under laboratory 
conditions. However, the parameter determination for 
this model revealed a certain dependence on the applied 
stress, complicating predictions under different loading 
conditions. To address this, the paper proposes a 
modified analytical form of the Zener fractional model 
that accounts for the sensitivity of the original model's 
parameters to stress levels. The resulting model, while 
introducing an additional parameter (making it five in 
total), promises improved predictive accuracy. Future 
research will focus on refining this model to identify its 
new parameters, ultimately creating a truly predictive 
model.

7 – ACKNOWLEDGMENTS

The authors wish to express their gratitude to the French 
government for its support of this work through the Eiffel 
Excellence program and the DIAMWOOD ANR PRCE 
N° 23-CE22-0006-03 project.

8 – REFERENCES

[1] B. Claire. “Study of the mechanical properties and
drying shrinkage of wood at the cell wall level: an
attempt to understand the paradoxical macroscopic
behavior of tension wood with a gelatinous layer.” PhD
thesis. ENGREF, 2001.

[2] X. Zheng, Z.  Li, M. He, F. Lam, “Experimental
investigation on the rheological behavior of timber in
longitudinal and transverse compression”, In :
Construction and Building Materials 304(2021), pp. 124-
633.

[3] M. Asyraf, M. Ishak, S. Sapuan, N. Yidris, R. Ilyas,
‘’Woods and composites cantilever beam : A
comprehensive review of experimental and numerical
creep methodologies’’, In: Journal of Materials
Research and Technology, 9(2020), pp. 67-76.

[4] A.K. Mézatio, L.C. Nguedjio, S.N. Mabekou, R.M.
Pitti, F. Dubois, P.K. Talla. “Exploring physical and
termo-elastic properties of two tropical wood species:
insights from probabilistic analysis.” In: Wood Marerials
sciences and Engineering (2024), pp. 1– 12.

[5] GB. Talla Fotsing, E. Foadieng, R. Moutou Pitti, PK.
Talla ‘’Triaxial variation of the modulus of elasticity in
the thermo-elastic range of six tropical wood species’’ In:
Wood Material Science & Engineering, 18(2023), pp.
120–129.

[6] E. Nkene Mezui, C.F. Pambou Nziengui, R. Moutou
Pitti ‘’Strain and cracks investigations on tropical green
wood slices under natural drying: experimental and

numerical approaches’’ In:  Eur. J. Wood Prod, 81(2023), 
pp. 187–207.

[7] L.C. Nguedjio, J.S. Takam Mabekou, R. Moutou Pitti,
B. Blaysat, P.K. Talla. “Study of nonlinear creep
behavior of entandrophragma cylindricum wood through
Zener fractional rheological model.” In: Annual
Conference of Society of Experimental Mechanics
(2024), pp. 1–7.

[8] A. Bonfanti, J.L. Kaplan, G. Charras, A.
Kabla‘’Fractional viscoelastic models for power-law
materials’’  In: Soft Matter, 16(2020), pp. 6002-20.

[9] L.C. Nguedjio, S.N. Mabekou, R.M. Pitti, . Blaysat,
F. Zemtchou, A.K. Mezatio, P.K. Talla. “Modeling the
nonlinear creep behavior of entandrophragma
cylindricum wood by a fractional derivative model.” In:
Mechanics of Time-Dependent Materials 28(2024), pp.
303– 319.

[10] L.C. Nguedjio, J.S. Mabekou Takam, R. Moutou
Pitti, B. Blaysat, N. Sauvat, J. Gril,  F. Zemtchou, P.K.
Talla “Analyzing creep-recovery behavior of tropical
entandrophragma cylindricum wood: Traditional and
fractional modeling methods” In: International Journal of
Solids and Structures 306(2025), pp. 113– 122.

[11] A.K. Prisca, N.J. Michel, E. Foadieng, P.K. Talla.
“Investigation of nonlinear crepp behaviour of millettia
laurentii wood through zener fractional rgheological
model.” In: Journal of materials sciences  (2021), pp. 1–
7.

[12] C. Celauro, C. Fecarotti, A. Pirrotta, A. Collop,
“Experimental validation of a fractional model for
creep/recovery testing of asphalt mixtures.” In:
Construction and Building Materials 36 (2012), pp. 458–
466.

[13] L. Zhao, Y. Wei, G.W. Zhang,  F. Xi, ‘’Short‐term
creep properties and creep model of wood‐plastic
composites’’, In: Polymer Composites, 43(2022), pp.
924-933.

[14] C. Pichler, R. Maderebner, A. Dummer, T. Stieb, R.
Lackner ‘’Scott Blair Fractional-Type Viscoelastic
Behavior of Clear Spruce Wood: Influence of
Compression Wood on Power-Law Stiffness
Parameters’’, In : Materials, 17(2024) , pp. 54-77.

[15] J. Rathinaraj, G.H. McKinley, B. Keshavarz,
‘’Incorporating rheological nonlinearity into fractional
calculus descriptions of fractal matter and multi-scale
complex fluids’’, In: Fractal and Fractional, 5(2021), pp.
174.

[16] I. Curtu, M.D. Stanciu, ‘’Rheology in wood
engineering’’, In : Procedia Technology, 19(2015), pp.
77-84.

5442https://doi.org/10.52202/080513-0669



[17] K. Shimazaki, K. Ando, ‘’Analysis of shear creep
properties of wood via modified Burger models and off-
axis compression test method’’, In : Wood Science and
Technology, 58(2024), pp. 1473-1490.

[18] H.J. Haubold, A.M. Mathai, R.K. Saxena
‘’Mittag-Leffler functions and theirapplications’’, In : J.
Appl. Math, 1 (2011), pp. 298-628.

[19] H. Gao, F. Wang, Z. Shao ‘’Study on the rheological
model of xuan paper’’, In : WoodSci. Technol,
50(2016), pp. 427–440.

[20] N.S. Tagne, D. Ndapeu, D. Nkemaja, G. Tchemou,

D. Fokwa, W. Huisken ‘’study of
the viscoelastic behaviour of the Raffia vinifera fibres’’
In : Industrial Crops and Products, 124(2018), pp. 572–
581.

[21] J. Hou, Y. Jiang, Y. Yin, W. Zhang,  H. Chen, Y.
Yu, Z. Jiang, Z. ‘’Experimental study and comparative
numerical modeling of creep behavior of white oak wood
with various distributions of earlywood vessel belt’’, In :
Journal of Wood Science, 67(2021), pp. 1-13.

5443 https://doi.org/10.52202/080513-0669




