2025 IEEE/ACM 47th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion 2025)

Ottawa, Ontario, Canada 27 April - 3 May 2025

IEEE Catalog Number: CFP2549C-POD ISBN:

979-8-3315-3684-8

Copyright © 2025 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP2549C-POD

 ISBN (Print-On-Demand):
 979-8-3315-3684-8

 ISBN (Online):
 979-8-3315-3683-1

ISSN: 2574-1926

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: (845) 758-0400 Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2025 IEEE/ACM 47th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

ICSE-Companion 2025

Table of Contents

Message from the ICSE 2025 General Co-Chairs xi CSE Demonstrations Committees xv Ooctoral Symposium Committees xvi ndustry Challenge Committees xi CCM Student Research Competition (SRC) Committees x
Demonstrations
GUIDE: LLM-Driven GUI Generation Decomposition for Automated Prototyping
A-COBREX: A Tool for Identifying Business Rules in COBOL Programs Samveg Shah (Indian Institute of Technology, India), Shivali Agarwal (IBM Research, India), Saravanan Krishnan (IBM Research, India), Vini Kanvar (IBM Research, India), and Sridhar Chimalakonda (Indian Institute of Technology, India)
ReqST: A Requirement Specification Tool for Virtual Reality Software Products Sai Anirudh Karre (IIIT Hyderabad, India), Amogha A Halhalli (IIIT Hyderabad, India), and Raghu Reddy Y (IIIT Hyderabad, India)
IT: An Accurate, Compliant SBOM Generator with Incremental Construction
he Software Librarian: Python Package Insights for Copilot

AutoRestTest: A Tool for Automated REST API Testing Using LLMs and MARL 21 Tyler Stennett (Georgia Institute of Technology, USA), Myeongsoo Kim (Georgia Institute of Technology, USA), Saurabh Sinha (IBM Research, USA), and Alessandro Orso (Georgia Institute of Technology, USA)
FairLay-ML: Intuitive Debugging of Fairness in Data-Driven Social-Critical Software
Closing the Gap Between Sensor Inputs and Driving Properties: A Scene Graph Generator for CARLA
Trey Woodlief (University of Virginia, USA), Felipe Toledo (University of Virginia, USA), Sebastian Elbaum (University of Virginia, USA), and Matthew B. Dwyer (University of Virginia, USA)
LEGOS-SLEEC: Tool for Formalizing and Analyzing Normative Requirements
IFSE: Taming Closed-box Functions in Symbolic Execution via Fuzz Solving
GeMTest: A General Metamorphic Testing Framework
OptCD: Optimizing Continuous Development
Poster
 HyperCRX 2.0: A Comprehensive and Automated Tool for Empowering GitHub Insights

Doctoral Symposium

Session 1: Security & Miscellaneous

Advancing Secure and Standard Source Code Generation Techniques 5 Mohammed Latif Siddiq (University of Notre Dame, USA)	53
Towards Secure and Interactive Smart Contract Code from Formal SYMBOLEO Specifications 5 Sofana Alfuhaid (University of Ottawa, Canada)	58
Empirically-Informed Approaches to Shift Vulnerability Detection to the Left	53
A BizDevOps-Aligned Framework for Integrating Security Practices in Agile Software Development	58
Towards Realistic, Applicable and Feasible Configuration-Aware Performance Modeling	'1
Session 2: Human aspects	
Decoding Diversity: Understanding its Impact on Team Performance in Software Teams	⁷ 6
Diverse Participation and Newcomer Risk Perception in Open Source Software Communities 8 Hana Frluckaj (University of Texas-Austin)	31
A Framework for Supporting Transparency in Software Ecosystems Portals from the Point of View of Developer Experience	37
Studying and Improving Code Understandability Through Atoms of Confusion)2
Understanding and Improving Code Review of Changes in Build Systems	17
Session 3: Maintenance	
Concern-based Management of Software Design Complexity)2
Mitigating Waste That Tacitly Accrues in Continuous Integration Pipelines)7
Automated Detection and Refactoring of Mock Clones in Java Projects	.2
Practical Preprocessing of Logs at Scale	.7

Session 4: Testing

TestifAI: Probabilistic Context-Aware Testing For Safe Deep Learning Models	122
Foundation Models for Automatic Issue Labeling	127
Automatically Generating Single-Responsibility Unit Tests Geraldine Galindo-Gutierrez (Universidad Católica Boliviana)	132
Automatic Test Case Generation for Smart Human-Centric Ecosystems	135
A Framework for On the Fly Input Refinement for Deep Learning Models	140
Posters	
Build and Runtime Integrity for Java	145
Interactions with Generative AI: Wearables to Measure Developer Experience and Productivity Objectively	148
Understanding and Supporting the ML Supply Chain Through ML Bill of Materials	151
Rethinking Software Development Considering Collaboration with AI Assistants	154
Exploring GenAI-Driven Innovation in Game Development	157
Towards Fully-Traceable Human-Centred Design	160
User Perceptions of Ethical Issues in Software	163
Advancing Cognitive Inclusivity in Software Engineering Tools and Practices	166
Human-Centric Requirements Engineering for Digital Health Software for Ageing People	169
Improving Software Team Communication Through Social Interventions in Project Management Tools	
April Clarke (University of Canterbury, New Zealand) Decoding the Impostor Phenomenon: Unveiling Factors and Mitigation Strategies for Software	
Decoding the Impostor Phenomenon: Unveiling Factors and Mitigation Strategies for Software Professionals	175

Customer Validation, Feedback and Collaboration in Large-Scale Continuous Software Development	170
Development David Molamphy (Dell Technologies & University of Limerick, Ireland), Brian Fitzgerald (University of Limerick, Ireland), and Kieran Conboy (University of Limerick, Ireland)	170
Addressing Recurring Bugs and Workflow Challenges in Quantum Software Engineering Jake Zappin (William & Mary, USA)	181
Distilling Reference Architectures from Open Source Repositories	184
Towards Quality Assurance of Natural Language in Code	187
Semantic-Aware Replicated Data Types for Improved Conflict Resolution in Near-Synchronous Code Collaboration	
Energy Efficiency Through Architectural Tactics for Self-Adaptive Cloud Systems	193
Augmenting the Generality and Performance of Large Language Models for Software Engineering	196
Automated Repair of Cyber-Physical Systems	199
Structured State Space Exploration of Dash+ Models	202
Intelligent Automation for Accelerating the Repair of Software Build Failures	205
Trustworthiness of Large Language Models for Code	208
SRC - ACM Student Research Competition	
Automatic Fuzz Drivers for JavaScript with Type Distributions	211
CASS: Context-Aware Slice Summarization for Debugging Regression Failures	213
Characterising Algorithm Debt in Machine and Deep Learning Systems	216
Consistent Graph Model Generation with Large Language Models	218
Enhancing OSS Remediation with Patch Backporting	220
Identifying Performance-Sensitive Configurations in Software Systems with LLM-Driven Agents	222

MUARF: Leveraging Multi-Agent Workflows for Automated Code Refactoring	226
On the Automation of Code Review Tasks Through Cross-Task Knowledge Distillation	228
On the Fly Input Refinement for Code Language Models	230
Program Feature-Based Fuzzing Benchmarking	232
Revisiting SWE-Bench: On the Importance of Data Quality for LLM-Based Code Models	235
The Balancing Act of Policies in Developing Machine Learning Explanations	237
To Mock or Not to Mock: Divergence in Mocking Practices Between LLM and Developers Hanbin Qin (Stevens Institute of Technology, USA)	239
Towards Compatibly Mitigating Technical Lag in Maven Projects	241
Industry Challenge	
CKGFuzzer: LLM-Based Fuzz Driver Generation Enhanced By Code Knowledge Graph	243
Hanxiang Xu (Huazhong University of Science and Technology, China), Wei Ma (Singapore Management University, Singapore), Ting Zhou (Huazhong University of Science and Technology, China), Yanjie Zhao (Huazhong University of Science and Technology, China), Kai Chen (Huazhong University of Science and Technology, China), Qiang Hu (The University of Tokyo, Japan), Yang Liu (Nanyang Technological University, Singapore), and Haoyu Wang (Huazhong University of Science	

CommitShield: Tracking Vulnerability Introduction and Fix in Version Control Systems	279
Exploring Large Language Models for Analyzing Open Source License Conflicts: How Far Are We? Xing Cui (Institute of Software Chinese Academy of Sciences; University of Chinese Academy of Sciences), Jingzheng Wu (Institute of Software Chinese Academy of Sciences); Key Laboratory of System Software (Chinese Academy of Sciences); Institute of Software Chinese Academy of Sciences), Xiang Ling (Institute of Software Chinese Academy of Sciences; Key Laboratory of System Software (Chinese Academy of Sciences); Institute of Software Chinese Academy of Sciences), Tianyue Luo (Institute of Software Chinese Academy of Sciences), Mutian Yang (Beijing ZhongKeWeiLan Technology Co., Ltd.), and Wenxiang Ou (Institute of Software Chinese Academy of Sciences)	291
Aditya Kahol (TCS Research, India), Anka Chandrahas Tummepalli (TCS Research, India), and Preethu Rose Anish (TCS Research, India)	303
Author Index	315