2025 IEEE/ACM 47th International Conference on Software Engineering: New Ideas and Emerging Results **(ICSE-NIER 2025)**

Ottawa, Ontario, Canada 27 April - 3 May 2025

IEEE Catalog Number: CFP25L71-POD **ISBN:**

979-8-3315-3712-8

Copyright © 2025 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP25L71-POD
ISBN (Print-On-Demand):	979-8-3315-3712-8
ISBN (Online):	979-8-3315-3711-1
ISSN:	2832-7624

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2025 IEEE/ACM 47th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER) ICSE-NIER 2025

Table of Contents

NIER 2025 Committee
Formal Methods 1
AI-Assisted Autoformalization of Combinatorics Problems in Proof Assistants
 SolSearch: An LLM-Driven Framework for Efficient SAT-Solving Code Generation
Listening to the Firehose: Sonifying Z3's Behavior

Human and Social Process 1

Digital Twins for Software Engineering Processes Robin Kimmel (University of Stuttart, Germany), Judith Michael (RWTH Aachen University, Germany), Andreas Wortmann (University of Stuttgart, Germany), and Jingxi Zhang (University of Stuttgart, Germany)	16
Discovering Ideologies of the Open Source Software Movement Yang Yue (California State University San Marcos), Yi Wang (Beijing University of Posts and Telecommunications, China), and David Redmiles (University of California, Irvine)	. 21

SE for AI 1

When in Doubt Throw It Out: Building on Confident Learning for Vulnerability Detection	
Yuanjun Gong (Renmin University of China, China) and Fabio Massacci	
(University of Trento, Italy and Vrije Universiteit Amsterdam, The	
Netherlands)	

Formal Methods 2

Model Assisted Refinement of Metamorphic Relations for Scientific Software	1
A Unit Proofing Framework for Code-Level Verification: A Research Agenda	6
Paschal C. Amusuo (Purdue University), Parth V. Patil (Purdue	
University), Owen Cochell (Michigan State University), Taylor Le	
Lievre (Purdue University), and James C. Davis (Purdue University)	

Requirements

Nitish Patkar (University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Switzerland), Aimen Fahmi (University of Fribourg, Switzerland), Timo Kehrer (University of Bern, Switzerland), and Norbert Seyff (University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Switzerland)

Design for AI

Optimizing Experiment Configurations for LLM Applications Through Exploratory Analysis 46 Nimrod Busany (Accenture Labs, Israel), Hananel Hadad (Accenture Labs, Israel), Zofia Maszlanka (Avanade, Poland), Rohit Shelke (University of Ottawa, Canada), Gregory Price (University of Ottawa, Canada), Okhaide Akhigbe (University of Ottawa, Canada), and Daniel Amyot (University of Ottawa, Canada)

AI for Requirements

On the Impact of Requirements Smells in Prompts: The Case of Automated Traceability51 Andreas Vogelsang (University of Cologne, Germany), Alexander Korn (University of Cologne, Germany), Giovanna Broccia (CNR-ISTI, Italy), Alessio Ferrari (University College Dublin and CNR-ISTI, Italy), Jannik Fischbach (Netlight Consulting GmbH and fortiss GmbH, Germany), and Chetan Arora (Monash University, Australia)

SE for AI 2

Human and Social 3

AI for Analysis 4

Using ML Filters to Help Automated Vulnerability Repairs: when it Helps and when it	
Doesn't	66
Maria Camporese (University of Trento, Italy) and Fabio Massacci	
(University of Trento, Italy; Vrije Universiteit Amsterdam, The	
Netherlands)	

AI for SE 3

Real-Time SE

Testing and QA 5

AI for Analysis 5

Beyond Syntax: How Do LLMs Understand Code?
AI for Testing and QA 6
Evaluating the Generalizability of LLMs in Automated Program Repair
 How Propense Are Large Language Models at Producing Code Smells? A Benchmarking Study 96 Alejandro Velasco (William & Mary, USA), Daniel Rodriguez-Cardenas (William & Mary, USA), Lutfar Rahman Alif (University of Dhaka, Bangladesh), David N. Palacio (William & Mary, USA), and Denys Poshyvanyk (William & Mary, USA)
Process
Energy-Aware Software Testing
SusDevOps: Promoting Sustainability to a First Principle in Software Delivery
LLMs as Evaluators: A Novel Approach to Commit Message Quality Assessment
Using Reinforcement Learning to Sustain the Performance of Version Control Repositories

Towards Early Warning and Migration of High-Risk Dormant Open-Source Software Dependencies... 121

Zijie Huang (Shanghai Key Laboratory of Computer Software Testing & Evaluating, Shanghai Development Center of Computer Software Technology, China), Lizhi Cai (Shanghai Key Laboratory of Computer Software Testing & Evaluating, Shanghai Development Center of Computer Software Technology, China; East China University of Science and Technology), Xuan Mao (Shanghai Key Laboratory of Computer Software Testing & Evaluating, Shanghai Development Center of Computer Software Technology, China; East China University of Science and Technology), and Kang Yang (Shanghai Key Laboratory of Computer Software Testing & Evaluating, Shanghai Ney Laboratory of Computer Software Testing & Evaluating, Shanghai Ney Laboratory of Computer Software Testing & Evaluating, Shanghai Development Center of Computer Software Technology, China)

Poster

Recommending Pre-Trained Models for IoT Devices	126
Parth V. Patil (Purdue University, USA), Wenxin Jiang (Purdue	
University, USA), Huiyun Peng (Purdue University, ŬSA), Daniel Lugo	
(Purdue Üniversity, UŠA), Kelechi G Kalu (Purdue University, USA),	
Josh LeBlanc (Purdue University, USA), Lawrence Smith (Purdue	
University, USA), Hyeonwoo Heo (Purdue University, USA), Nathanael	
Aou (Purdue University, USA), and James C Davis (Purdue University,	
USA)	

13	31
	13