2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE 2025)

Ottawa, Ontario, Canada 27 April - 3 May 2025

Pages 1-794

IEEE Catalog Number: CFP25018-POD **ISBN:**

979-8-3315-0570-7

Copyright © 2025 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

CFP25018-POD
979-8-3315-0570-7
979-8-3315-0569-1
0270-5257

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE) ICSE 2025

Table of Contents

Message from the ICSE 2025 General Chairs	xlii
Message from the ICSE 2025 Program Chairs	xlvi
Organizing Committee	1
Program Committee	liii
Additional Reviewers	lv
Research Track Committee	lvi
Artifact Evaluation Committee	1xv

Keynote

Research in Program Repair and Approximate Compu	ating: A Retrospective	N/A
Research in Program Repair and Approximate Compu- Martin C. Rinard (MIT EECS & CSAIL)	9	

Formal Methods 1

SpecGen: Automated Generation of Formal Program Specifications via Large Language Models 16 Lezhi Ma (Nanjing University, China), Shangqing Liu (Nanjing University, China), Yi Li (Nanyang Technological University, Singapore), Xiaofei Xie (Singapore Management University, Singapore), and Lei Bu (Nanjing University, China)
Gpass: A Goal-adaptive Neural Theorem Prover based on Coq for Automated Formal Verification 29 Yizhou Chen (Peking University)
 Formally Verified Binary-level Pointer Analysis
 EffBT: An Efficient Behavior Tree Reactive Synthesis and Execution Framework

Program Comprehension 1

 An Empirical Study on Package-Level Deprecation in Python Ecosystem	66
 Datalog-Based Language-Agnostic Change Impact Analysis for Microservices Qingkai Shi (The State Key Laboratory for Novel Software Technology, Nanjing University), Xiaoheng Xie (Ant Group), Xianjin Fu (Ant Group), Peng Di (Ant Group), Huawei Li (Alibaba Inc.), Ang Zhou (Ant Group), and Gang Fan (Ant Group) 	78
GenC2Rust: Towards Generating Generic Rust Code from C Xiafa Wu (University of California, Irvine) and Brian Demsky (University of California, Irvine)	90
Instrumentation-Driven Evolution-Aware Runtime Verification	03
Moye: A Wallbreaker for Monolithic Firmware	16
Understanding and Detecting Peer Dependency Resolving Loop in npm Ecosystem	29

Testing and QA 1

Critical Variable State-Aware Directed Greybox Fuzzing	141
Xu Chen (Institute of Information Engineering at Chinese Academy of	
Sciences, China / University of Chinese Academy of Sciences, China),	
Ningning Cui (Institute of Information Engineering at Chinese Academy	
of Sciences, China / University of Chinese Academy of Sciences,	
China), Zhe Pan (Institute of Information Engineering at Chinese	
Academy of Sciences, China / Úniversity of Chinese Academy of	
Scienceš, China), Liwei Chen (Institute of Information Engineering at	
Chinese Academy of Sciences, China / University of Chinese Academy of	
Sciences, China), Gang Shi (Institute of Information Engineering at	
Chinese Academy of Sciences, China / University of Chinese Academy of	
Sciences, China), and Dan Meng (Institute of Information Engineering	
at Chinese Academy of Sciences, China / University of Chinese Academy	
of Sciences, China)	

 LWDIFF: An LLM-Assisted Differential Testing Framework for WebAssembly Runtimes	53
Stefan Nagy (University of Utah, USA) and Gabriel Sherman (University	65
of Utah, USA) Parametric Falsification of Many Probabilistic Requirements under Flakiness	78
 REDII: Test Infrastructure to Enable Deterministic Reproduction of Failures for Distributed Systems	₹

AI for User Experience

Testing and Security

Fuzzing MLIR Compilers with Custom Mutation Synthesis Ben Limpanukorn (University of California, Los Angeles, USA), Jiyuan Wang (University of California, Los Angeles, USA), Hong Jin Kang (University of California, Los Angeles, USA), Zitong Zhou (University	217
of California, Los Angeles, USA), and Miryung Kim (University of California, Los Angeles, USA)	
InSVDF: Interface-State-Aware Virtual Device Fuzzing	230
Zexiang Zhang (National University of Defense Technology, China),	
Gaoning Pan (Hangzhou Dianzi University, China), Ruipeng Wang	
(National University of Defense Technology, China), Yiming Tao	
(Zhejiang University, China), Zulie Pan (National University of	
Defense Technology, China), Cheng Tu (National University of Defense	
Technology, China), Min Zhang (National University of Defense	
Technology, China), Yang Li (National University of Defense	
Technology, China), Yi Shen (National University of Defense	
Technology, China), and Chunming Wu (Zhejiang University, China)	

Reduce Dependence for Sound Concurrency Bug Prediction Shihao Zhu (Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China), Yuqi Guo (Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China), Yan Cai (Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China), Bin Liang (Renmin University of China, China), Long Zhang (National Intelligent Voice Innovation Center, Inspur Cloud Information Technology Co., Ltd., China), Rui Chen (Beijing Sunwise Information Technology Ltd., China), and Tingting Yu (Beijing Sunwise Information Technology Ltd., China)	242
	. 255
 TransferFuzz: Fuzzing with Historical Trace for Verifying Propagated Vulnerability Code	268

AI for Analysis 1

1
]

Can an LLM find its way around a Spreadsheet?	94
QEDCartographer: Automating Formal Verification Using Reward-Free Reinforcement Learning . 307 Alex Sanchez-Stern (University of Massachusetts, USA), Abhishek Varghese (University of Massachusetts, USA), Zhanna Zhanna Kaufman (University of Massachusetts, USA), Dylan Zhang (University of Illinois Urbana-Champaign, USA), Talia Ringer (University of Illinois Urbana-Champaign, USA), and Yuriy Brun (University of Massachusetts, USA)	17
TIGER: A Generating-Then-Ranking Framework for Practical Python Type Inference	21
 ROCODE: Integrating Backtracking Mechanism and Program Analysis in Large Language Models for Code Generation	34
 Rango: Adaptive Retrieval-Augmented Proving for Automated Software Verification	7

Autonomy

A Differential Testing Framework to Identify Critical AV Failures Leveraging Arbitrary	
Inputs	360
Trey Woodlief (University of Virginia), Carl Hildebrandt (University of Virginia), and Sebastian Elbaum (University of Virginia)	
Automating a Complete Software Test Process Using LLMs: An Automotive Case Study	373
Shuai Wang (Chalmers University of Technology, Sweden), Yinan Yu	
(Chalmers University of Technology, Sweden), Robert Feldt (Chalmers	
University of Technology, Sweden), and Dhasarathy Parthasarathy (Volvo	
Group, Sweden)	

LLM-Agents Driven Automated Simulation Testing and Analysis of small Uncrewed Aerial Systems	35
Efficient Domain Augmentation for Autonomous Driving Testing Using Diffusion Models)8
 GARL: Genetic Algorithm-Augmented Reinforcement Learning to Detect Violations in Marker-Based Autonomous Landing Systems	1
 Decictor: Towards Evaluating the Robustness of Decision-Making in Autonomous Driving Systems	24

AI for Testing and QA 1

Does GenAI Make Usability Testing Obsolete? Ali Ebrahimi Pourasad (University of Hamburg) and Walid Maalej (University of Hamburg)	437
Feature-Driven End-To-End Test Generation Parsa Alian (University of British Columbia, Canada), Noor Nashid (University of British Columbia, Canada), Mobina Shahbandeh (University of British Columbia, Canada), Taha Shabani (University of British Columbia, Canada), and Ali Mesbah (University of British Columbia, Canada)	450
SeeAction: Towards Reverse Engineering How-What-Where of HCI Actions from Screencasts for UI Automation Dehai Zhao (CSIRO's Data61, Australia), Zhenchang Xing (CSIRO's Data61, Australia), Qinghua Lu (CSIRO's Data61, Australia), Xiwei Xu (CSIRO's Data61, Australia), and Liming Zhu (CSIRO's Data61 & School of CSE, UNSW, Australia)	463
Synthesizing Document Database Queries using Collection Abstractions Qikang Liu (Simon Fraser University), Yang He (Simon Fraser University), Yanwen Cai (Simon Fraser University), Byeongguk Kwak (Simon Fraser University), and Yuepeng Wang (Simon Fraser University)	476

The Power of Types: Exploring the Impact of Type Checking on Neural Bug Detection in	
Dynamically Typed Languages	. 489
Boqi Chen (McGill University), José Antonio Hernández López (Linköping	
University), Gunter Mussbacher (McGill University), and Dániel Varró	
(Linköping University)	

SE for AI 1

A Test Oracle for Reinforcement Learning Software based on Lyapunov Stability Control Theory Shiyu Zhang (The Hong Kong Polytechnic University, Hong Kong), Haoyang Song (The Hong Kong Polytechnic University, Hong Kong), Qixin Wang (The Hong Kong Polytechnic University, Hong Kong), Henghua Shen (The Hong Kong Polytechnic University, Hong Kong), and Yu Pei (The Hong Kong Polytechnic University, Hong Kong)	502
CodeImprove: Program Adaptation for Deep Code Models Ravishka Rathnasuriya (University of Texas at Dallas, USA), Zijie Zhao (University of Pennsylvania, USA), and Wei Yang (University of Texas at Dallas, USA)	514
FairQuant: Certifying and Quantifying Fairness of Deep Neural Networks Brian Hyeongseok Kim (University of Southern California, USA), Jingbo Wang (Purdue University, USA), and Chao Wang (University of Southern California, USA)	527

AI for SE 1

Calibration and Correctness of Language Models for Code
An Empirical Study on Commit Message Generation using LLMs via In-Context Learning
Instruct or Interact? Exploring and Eliciting LLMs' Capability in Code Snippet Adaptation Through Prompt Engineering

 Search-Based LLMs for Code Optimization	578
 Towards Better Answers: Automated Stack Overflow Post Updating	91
 Unseen Horizons: Unveiling the Real Capability of LLM Code Generation Beyond the Familiar 6 Yuanliang Zhang (National University of Defense Technology), Yifan Xie (National University of Defense Technology), Shanshan Li (National University of Defense Technology), Ke Liu (National University of Defense Technology), Chong Wang (National University of Defense Technology), Zhouyang Jia (National University of Defense Technology), Xiangbing Huang (National University of Defense Technology), Jie Song (National University of Defense Technology), Chaopeng Luo (National University of Defense Technology), Zhizheng Zheng (National University of Defense Technology), Rulin Xu (National University of Defense Technology), Yitong Liu (National University of Defense Technology), Si Zheng (National University of Defense Technology), and Xiangke Liao (National University of Defense Technology) 	04

Formal Methods 2

ConsCS: Effective and Efficient Verification of Circom Circuits	516
Constrained LTL Specification Learning from Examples	529
LLM-aided Automatic Modelling for Security Protocol Verification	542

Databases and Business

 Thanos: DBMS Bug Detection via Storage Engine Rotation Based Differential Testing
Coni: Detecting Database Connector Bugs via State-Aware Test Case Generation
PUPPY: Finding Performance Degradation Bugs in DBMSs via Limited-Optimization Plan Construction

Program Comprehension 2

Human and Social Process 2

 Who's Pushing the Code? An Exploration of GitHub Impersonation	704
Investigating the Impact of Interpersonal Challenges on Feeling Welcome in OSS	717
State University), Rudrajit Choudhuri (Oregon State University), Marco Gerosa (Northern Arizona University), Anita Sarma (Oregon State University), and Igor Steinmacher (Northern Arizona University)	

SE for AI with Security

AI for Analysis 2

Neurosymbolic Modular Refinement Type Inference
An Empirical Study on Automatically Detecting AI-Generated Source Code: How Far Are We? 859 Hyunjae Suh (University of California, Irvine), Mahan Tafreshipour (University of California, Irvine), Jiawei Li (University of California, Irvine), Adithya Bhattiprolu (University of California, Irvine), and Iftekhar Ahmed (University of California, Irvine)
 Planning a Large Language Model for Static Detection of Runtime Errors in Code Snippets
LLMs Meet Library Evolution: Evaluating Deprecated API Usage in LLM-based Code Completion 885
Chong Wang (Nanyang Technological University), Kaifeng Huang (Tongji University), Jian Zhang (Nanyang Technological University), Yebo Feng (Nanyang Technological University), Lyuye Zhang (Nanyang Technological University), Yang Liu (Nanyang Technological University), and Xin Peng (Fudan University)
Knowledge-Enhanced Program Repair for Data Science Code

AI for Program Comprehension 1

ADAMAS: Adaptive Domain-Aware Performance Anomaly Detection in Cloud Service Systems .. 911 Wenwei Gu (The Chinese University of Hong Kong), Jiazhen Gu (The Chinese University of Hong Kong), Jinyang Liu (The Chinese University of Hong Kong), Zhuangbin Chen (Sun Yat-sen University), Jianping Zhang (The Chinese University of Hong Kong), Jinxi Kuang (The Chinese University of Hong Kong), Cong Feng (Huawei Cloud Computing Technology Co., Ltd), Yongqiang Yang (Huawei Cloud Computing Technology Co., Ltd), and Michael R. Lyu (The Chinese University of Hong Kong)

 Model Editing for LLMs4Code: How Far are We?	937
Software Model Evolution with Large Language Models: Experiments on Simulated, Public, and Industrial Datasets	950
SpecRover: Code Intent Extraction via LLMs	963
Unleashing the True Potential of Semantic-based Log Parsing with Pre-trained Language Models	975

AI for Testing and QA 2

 Faster Configuration Performance Bug Testing with Neural Dual-level Prioritization
Metamorphic-Based Many-Objective Distillation of LLMs for Code-related Tasks
NIODebugger: A Novel Approach to Repair Non-Idempotent-Outcome Tests with LLM-Based Agent 1014 <i>Kaiyao Ke (University of Illinois Urbana-Champaign, USA)</i>
Test Intention Guided LLM-based Unit Test Generation
What You See Is What You Get: Attention-based Self-guided Automatic Unit Test Generation 1039 Xin Yin (Zhejiang University, China), Chao Ni (Zhejiang University, China), Xiaodan Xu (Zhejiang University, China), and Xiaohu Yang (Zhejiang University, China)

Analysis 1

 An Empirical Study on Reproducible Packaging in Open-Source Ecosystems
An Extensive Empirical Study of Nondeterministic Behavior in Static Analysis Tools
Execution Trace Reconstruction Using Diffusion-Based Generative Models
Interactive Cross-Language Pointer Analysis For Resolving Native Code in Java Programs 1089 Chenxi Zhang (State Key Laboratory for Novel Software Technology, China), Yufei Liang (State Key Laboratory for Novel Software Technology, China), Tian Tan (State Key Laboratory for Novel Software Technology, China), Chang Xu (State Key Laboratory for Novel Software Technology, China), Shuangxiang Kan (University of New South Wales, Australia), Yulei Sui (University of New South Wales, Australia), and Yue Li (State Key Laboratory for Novel Software Technology, China)
 Static Analysis of Remote Procedure Call in Java Programs

AI for SE 2

Large Language Models for Safe Minimization	1114
Intention is All You Need: Refining Your Code from Your Intention	1127
University), Shangqing Liu (Nanyang Technological University), Ming Hu	
(Singapore Management University), Xiaohong Li (Tianjin University),	
and Lei Bu (Nanjing University)	

RLCoder: Reinforcement Learning for Repository-Level Code Completion
Yanlin Wang (Sun Yat-sen University), Yanli Wang (Sun Yat-sen
University), Daya Guo (Sun Yat-sen University), Jiachi Chen (Sun
Yat-sen University), Ruikai Zhang (Huawei Cloud Computing Technologies
Co., Ltd.), Yuchi Ma (Huawei Cloud Computing Technologies Co., Ltd.),
and Zibin Zheng (Sun Yat-sen University)
InterTrans: Leveraging Transitive Intermediate Translations to Enhance LLM-based Code
Translation 1153
Marcos Macedo (Queen's University, Canada), Yuan Tian (Queen's
University, Canada), Pengyu Nie (University of Waterloo, Canada),
Filipe R. Cogo (Centre for Software Excellence - Huawei, Canada), and
Bran Adams (Queen's University Canada)

Bram Adams (Queen's University, Canada)

Design for AI

A Large-Scale Study of Model Integration in ML-Enabled Software Systems	5
 Are LLMs Correctly Integrated into Software Systems?	'8
 Patch Synthesis for Property Repair of Deep Neural Networks	1

Human and Social 2

Code Today, Deadline Tomorrow: Procrastination Among Software Developers
"Get Me In The Groove": A Mixed Methods Study on Supporting ADHD Professional Programmers 1217 Kaia Newman (Carnegie Mellon University, USA), Sarah Snay (University of Michigan, USA), Madeline Endres (University of Massachusetts, USA), Manasvi Parikh (University of Michigan, USA), and Andrew Begel (Carnegie Mellon University, USA)
Hints Help Finding and Fixing Bugs Differently in Python and Text-based Program Representations 1230 Ruchit Rawal (Max Planck Institute for Software Systems, Germany), 1230 Victor-Alexandru Pădurean (Max Planck Institute for Software Systems, Germany), 1230 Germany), Sven Apel (Saarland University, Germany), Adish Singla (Max 1230 Planck Institute for Software Systems, Germany), and Mariya Toneva (Max Planck Institute for Software Systems, Germany)
How Scientists Use Jupyter Notebooks: Goals, Quality Attributes, and Opportunities

Security and Analysis 1

Accounting for Missing Events in Statistical Information Leakage Analysis
AssetHarvester: A Static Analysis Tool for Detecting Secret-Asset Pairs in Software
Artifacts
English (North Carolina State University, USA), Ken Ogura (North
Carolina State University, USA), Vitesh Kambara (North Carolina State
University, USA), Bradley Reaves (North Carolina State University,
USA), and Laurie Williams (North Carolina State University, USA)
Enhancing The Open Network: Definition and Automated Detection of Smart Contract Defects \dots 1281
Hao Song (Sichuan University, China), Teng Li (University of
Electronic Science and Technology of China, China), Jiachi Chen (Sun
Yat-Sen University, China), Ting Chen (University of Electronic
Science and Technology of China, China), Beibei Li (Sichuan
University, China), Zhangyan Lin (University of Electronic Science and
Technology of China, China), Yi Lu (BitsLab, Singapore), Pan Li
(TonBit, China), and Xihan Zhou (TonBit, China)

ZTD_{JAVA}: Mitigating Software Supply Chain Vulnerabilities via Zero-Trust Dependencies 1294 Paschal Amusuo (Purdue University), Kyle A. Robinson (Purdue University), Tanmay Singla (Purdue University), Huiyun Peng (Purdue University), Aravind Machiry (Purdue University), Santiago Torres-Arias (Purdue University), Laurent Simon (Google), and James C. Davis (Purdue University)

FairChecker: Detecting Fund-stealing Bugs in DeFi Protocols via Fairness Validation	1307
Yi Sun (Purdue University, USA), Zhuo Zhang (Purdue University, USA),	
and Xiangyu Zhang (Purdue University, USA)	

AI for Design and Architecture

An LLM-Based Agent-Oriented Approach for Automated Code Design Issue Localization 1 Fraol Batole (Tulane University), David OBrien (Iowa State University), Tien Nguyen (The University of Texas at Dallas), Robert Dyer (University of Nebraska-Lincoln), and Hridesh Rajan (Tulane University)	1320
Distilled Lifelong Self-Adaptation for Configurable Systems	1333

AI for Analysis 3

COCA: Generative Root Cause Analysis for Distributed Systems with Code Knowledge
Enhancing Code Generation via Bidirectional Comment-Level Mutual Grounding
 HumanEvo: An Evolution-aware Benchmark for More Realistic Evaluation of Repository-level Code Generation

AI for Requirements

From Bugs to Benefits: Improving User Stories by Leveraging Crowd Knowledge with CrUISE-AC..... 1385

Stefan Schwedt (Heriot Watt University, GB) and Thomas Ströder (Fachhochschule der Wirtschaft (FHDW), Germany)

LiSSA: Toward Generic Traceability Link Recovery through Retrieval-Augmented Generation 1396 Dominik Fuchß (Karlsruhe Institute of Technology (KIT), Germany), Tobias Hey (Karlsruhe Institute of Technology (KIT), Germany), Jan Keim (Karlsruhe Institute of Technology (KIT), Germany), Haoyu Liu (Karlsruhe Institute of Technology (KIT), Germany), Niklas Ewald (Karlsruhe Institute of Technology (KIT), Germany), Tobias Thirolf (Karlsruhe Institute of Technology (KIT), Germany), and Anne Koziolek (Karlsruhe Institute of Technology (KIT), Germany)

AI for Testing and QA 3

A Multi-Agent Approach for REST API Testing with Semantic Graphs and LLM-Driven Inputs 1409 Myeongsoo Kim (Georgia Institute of Technology), Tyler Stennett (Georgia Institute of Technology), Saurabh Sinha (IBM Research), and Alessandro Orso (Georgia Institute of Technology)
 ClozeMaster: Fuzzing Rust Compiler by Harnessing LLMs for Infilling Masked Real Programs 1422 Hongyan Gao (Nanjing University), Yibiao Yang (Nanjing University), Maolin Sun (Nanjing University), Jiangchang Wu (Nanjing University), Yuming Zhou (Nanjing University), and Baowen Xu (Nanjing University)
LLM Based Input Space Partitioning Testing for Library APIs
Leveraging Large Language Models for Enhancing the Understandability of Generated Unit Tests
exLong: Generating Exceptional Behavior Tests with Large Language Models
TOGLL: Correct and Strong Test Oracle Generation with LLMs

SE for AI 2

Answering User Questions about Machine Learning Models through Standardized Model Cards 1488 Tajkia Rahman Toma (University of Alberta), Balreet Grewal (University of Alberta), and Cor-Paul Bezemer (University of Alberta)

 Fairness Testing through Extreme Value Theory
Fixing Large Language Models' Specification Misunderstanding for Better Code Generation 1514 Zhao Tian (Tianjin University, China), Junjie Chen (Tianjin University, China), and Xiangyu Zhang (Purdue University, USA)
SOEN-101: Code Generation by Emulating Software Process Models Using Large Language Model Agents
<i>Tse-Hsun Chen (Concordia University)</i> The Product Beyond the Model An Empirical Study of Repositories of Open-Source ML Products
Products

Testing and QA 3

Increasing the Effectiveness of Automatically Generated Tests by Improving Class Observability Geraldine Galindo-Gutierrez (Universidad Católica Boliviana, Bolivia), Juan Pablo Sandoval Alcocer (Pontificia Universidad Católica de Chile, Chile), Nicolas Jimenez-Fuentes (Pontificia Universidad Católica de Chile, Chile), Alexandre Bergel (RelationalAI, Switzerland), and Gordon Fraser (University of Passau, Germany)	1553
Invivo Fuzzing by Amplifying Actual Executions Octavio Galland (Canonical) and Marcel Böhme (MPI-SP)	1566
Towards High-strength Combinatorial Interaction Testing for Highly Configurable Software Systems <i>Chuan Luo (Beihang University, China), Shuangyu Lyu (Beihang University, China), Wei Wu (Central South University, China), Hongyu Zhang (Chongqing University, China), Dianhui Chu (Harbin Institute of Technology, China), and Chunming Hu (Beihang University, China)</i>	. 1579
WDD: Weighted Delta Debugging Xintong Zhou (University of Waterloo, Canada), Zhenyang Xu (University of Waterloo, Canada), Mengxiao Zhang (University of Waterloo, Canada), Yongqiang Tian (The Hong Kong University of Science and Technology, China), and Chengnian Sun (University of Waterloo, Canada)	1592
TopSeed: Learning Seed Selection Strategies for Symbolic Execution from Scratch Jaehyeok Lee (Sungkyunkwan University) and Sooyoung Cha (Sungkyunkwan University)	. 1604

AI for Testing and QA 4

The Seeds of the FUTURE Sprout from History: Fuzzing for Unveiling Vulnerabilities in	
	516
Žhiyuan Li (Institute of Šoftware Chinese Academy of Sciences, China;	
University of Chinese Academy of Sciences, China), Jingzheng Wu	
(Institute of Software Chinese Academy of Sciences, China; Key	
Laboratory of Šystem Software (Chinese Academy of Sciences), China;	
State Key Laboratory of Computer Science, Institute of Software	
Chinese Academy of Sciences, China), Xiang Ling (Institute of Software	
Chinese Academy of Sciences, China; Key Laboratory of System Software	
(Chinese Academy of Sciences), China; State Key Laboratory of Computer	
Science, Institute of Software Chinese Academy of Sciences, China),	
Tianyue Luo (Institute of Software Chinese Academy of Sciences,	
China), Zhiqing Rui (Institute of Software Chinese Academy of	
Sciences, China; University of Chinese Academy of Sciences, China),	
and Yanjun Wu (Institute of Software Chinese Academy of Sciences,	
China; Key Laboratory of System Software (Chinese Academy of	
Sciences), China; State Key Laboratory of Computer Science, Institute	
of Software Chinese Academy of Sciences, China)	

Human and Social using AI 1

Between Lines of Code: Unraveling the Distinct Patterns of Machine and Human Programmers 1628 Yuling Shi (Shanghai Jiao Tong University), Hongyu Zhang (Chongqing University), Chengcheng Wan (East China Normal University), and Xiaodong Gu (Shanghai Jiao Tong University)
Deep Learning-based Code Reviews: A Paradigm Shift or a Double-Edged Sword?
An Exploratory Study of ML Sketches and Visual Code Assistants
LiCoEval: Evaluating LLMs on License Compliance in Code Generation
Trust Dynamics in AI-Assisted Development: Definitions, Factors, and Implications

What Guides Our Choices? Modeling Developers' Trust and Behavioral Intentions Towards GenAI	1691
Rudrajit Choudhuri (Oregon State University, USA), Bianca Trinkenreich (Oregon State University, USA), Rahul Pandita (GitHub Inc., USA), Eirini Kalliamvakou (GitHub Inc., USA), Igor Steinmacher (Northern Arizona University, USA), Marco Gerosa (Northern Arizona University, USA), Christopher Sanchez (Oregon State University, USA), and Anita Sarma (Oregon State University, USA)	
AI for Security 1	
Large Language Models as Configuration Validators Xinyu Lian (University of Illinois Urbana-Champaign, USA), Yinfang Chen (University of Illinois Urbana-Champaign, USA), Runxiang Cheng (University of Illinois Urbana-Champaign, USA), Jie Huang (University of Illinois Urbana-Champaign, USA), Parth Thakkar (Meta Platforms, Inc., USA), Minjia Zhang (University of Illinois Urbana-Champaign, USA), and Tianyin Xu (University of Illinois Urbana-Champaign, USA)	1704
LLM Assistance for Memory Safety Nausheen Mohammed (Microsoft Research, India), Akash Lal (Microsoft Research, India), Aseem Rastogi (Microsoft Research, India), Rahul Sharma (Microsoft Research, India), and Subhajit Roy (IIT Kanpur, India)	1717
 Vulnerability Detection with Code Language Models: How Far Are We?	1729
Combining Fine-tuning and LLM-based Agents for Intuitive Smart Contract Auditing with Justifications Wei Ma (Nanyang Technological University, Singapore), Daoyuan Wu (The Hong Kong University of Science and Technology, China), Yuqiang Sun (Nanyang Technological University, Singapore), Tianwen Wang (National University of Singapore, Singapore), Shangqing Liu (Nanyang Technological University, Singapore), Jian Zhang (Nanyang Technological University, Singapore), Yue Xue (MetaTrust Labs, Singapore), and Yang Liu (Nanyang Technological University, Singapore)	1742
Towards Neural Synthesis for SMT-assisted Proof-Oriented Programming Saikat Chakraborty (Microsoft Research), Gabriel Ebner (Microsoft Research), Siddharth Bhat (University of Cambridge), Sarah Fakhoury (Microsoft Research), Sakina Fatima (University of Ottawa), Shuvendu Lahiri (Microsoft Research), and Nikhil Swamy (Microsoft Research)	1755

Analysis 3

Boosting Path-Sensitive Value Flow Analysis via Removal of Redundant Summaries
Dockerfile Flakiness: Characterization and Repair
Evaluating Garbage Collection Performance Across Managed Language Runtimes
Module-Aware Context Sensitive Pointer Analysis

AI for Program Comprehension 2

Code Comment Inconsistency Detection and Rectification Using a Large Language Model 1 Guoping Rong (Nanjing University), Yongda Yu (Nanjing University), Song Liu (Nanjing University), Xin Tan (Nanjing University), Tianyi Zhang (Nanjing University), Haifeng Shen (Southern Cross University), and Jidong Hu (Zhongxing Telecom Equipment)	1832
Context Conquers Parameters: Outperforming Proprietary LLM in Commit Message Generation 1 Aaron Imani (University of California, Irvine), Iftekhar Ahmed (University of California, Irvine), and Mohammad Moshirpour (University of California, Irvine)	844
HedgeCode: A Multi-Task Hedging Contrastive Learning Framework for Code Search	1857

Gong Chen (Wuhan University, China), Xiaoyuan Xie (Wuhan University, China), Daniel Tang (University of Luxembourg, Luxembourg), Qi Xin (Wuhan University, China), and Wenjie Liu (Wuhan University, China)

Reasoning Runtime Behavior of a Program with LLM: How Far Are We?	869
Source Code Summarization in the Era of Large Language Models	.882
Template-Guided Program Repair in the Era of Large Language Models	.895

SE for AI 3

Dissecting Global Search: A Simple yet Effective Method to Boost Individual Discrimination Testing and Repair	08
 FixDrive: Automatically Repairing Autonomous Vehicle Driving Behaviour for \$0.08 per Violation	21
 MARQ: Engineering Mission-Critical AI-based Software with Automated Result Quality Adaptation	34

Program Comprehension 3

Automated Test Generation For Smart Contracts via On-Chain Test Case Augmentation and Migration	17
Boosting Code-line-level Defect Prediction with Spectrum Information and CausalityAnalysis196Shiyu Sun (State Key Laboratory for Novel Software Technology, Nanjing196University), Yanhui Li (State Key Laboratory for Novel Software196Technology, Nanjing University), Lin Chen (State Key Laboratory forNovel SoftwareNovel Software Technology, Nanjing University), Yuming Zhou (State Key196Laboratory for Novel Software Technology, Nanjing University), and196Jianhua Zhao (State Key Laboratory for Novel Software Technology, Nanjing University)196	50

Testing and QA 4

DPFuzzer: Discovering Safety Critical Vulnerabilities for Drone Path Planners Yue Wang (Xidian University), Chao Yang (Xidian University), Xiaodong Zhang (Xidian University), Yuwanqi Deng (Xidian University), and JianFeng Ma (Xidian University)	1973
IRFuzzer: Specialized Fuzzing for LLVM Backend Code Generation	1986
Ranking Relevant Tests for Order-Dependent Flaky Tests	1999
Selecting Initial Seeds for Better JVM Fuzzing	2012
Toward a Better Understanding of Probabilistic Delta Debugging	2024

Tumbling Down the Rabbit Hole: How do Assisting Exploration Strategies Facilitate Grey-box	
Fuzzing?	. 2036
Mingyuan Wu (Southern University of Science and Technology, China),	
Jiahong Xiang (Southern University of Science and Technology, China),	
Kunqiu Chen (Southern University of Science and Technology, China),	
Peng Di (Ant Group, China), Shin Hwei Tan (Concordia University	
Montreal, Canada), Heming Cui (The University of Hong Kong, China),	
and Yuqun Zhang (Southern University of Science and Technology, China)	

Human and Social 3

Relationship Status: "It's complicated" Developer-Security Expert Dynamics in Scrum	
Houda Naji (Ruhr University Bochum), Marco Gutfleisch (Ruhr University	
Bochum), and Alena Naiakshina (Ruhr University Bochum)	
•	

Human and Social using AI 2

Measuring the Runtime Performance of C++ Code Written by Humans using GitHub Copilot 2062 Daniel Erhabor (University of Waterloo), Sreeharsha Udayashankar (University of Waterloo), Meiyappan Nagappan (University of Waterloo), and Samer Al-Kiswany (University of Waterloo)

Security and Analysis 2

A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries
Cooperative Software Verification via Dynamic Program Splitting
 Exposing the Hidden Layer: Software Repositories in the Service of SEO Manipulation

Hetrify: Efficient Verification of Heterogeneous Programs on RISC-V
Yiwei Li (National University of Defense Technology, China), Liangze
Yin (National University of Defense Technology, China), Wei Dong
(National University of Defense Technology, China), Jiaxin Liu
(National University of Defense Technology, China), Yanfeng Hu
(National University of Defense Technology, China), and Shanshan Li
(National University of Defense Technology, China)
Hyperion: Unveiling DApp Inconsistencies using LLM and Dataflow-Guided Symbolic Execution 2125
Shuo Yang (Sun Yat-sen University), Xingwei Lin (Zhejiang University),
Jiachi Chen (Sun Yat-sen University), Qingyuan Zhong (Sun Yat-sen
University), Lei Xiao (Sun Yat-sen University), Renke Huang (Sun
Yat-sen University), Yanlin Wang (Sun Yat-sen University), and Zibin
Zheng (Sun Yat-sen University)
SmartReco: Detecting Read-Only Reentrancy via Fine-Grained Cross-DApp Analysis
Jingwen Zhang (Sun Yat-sen University, China; Peng Cheng Laboratory,
China), Zibin Zheng (Sun Yat-sen University, China; GuangDong
Engineering Technology Research Center of Blockchain, China), Yuhong
Nan (Sun Yat-sen University, China; GuangDong Engineering Technology
Research Center of Blockchain, China), Mingxi Ye (Sun Yat-sen
University, China; GuangDong Engineering Technology Research Center of

Blockchain, China), Kaiwen Ning (Sun Yat-sen University, China; Peng Cheng Laboratory, China), Yu Zhang (Harbin Institute of Technology,

China; Peng Cheng Laboratory, China), and Weizhe Zhang (Harbin

Institute of Technology, China; Peng Cheng Laboratory, China)

Design and Architecture 1

A Catalog of Micro Frontends Anti-patterns Nabson Silva (Federal University of Amazonas), Eriky Rodrigues (Federal University of Amazonas), and Tayana Conte (Federal University of Amazonas)	. 2151
PairSmell: A Novel Perspective Inspecting Software Modular Structure Chenxing Zhong (Nanjing University), Daniel Feitosa (University of Groningen), Paris Avgeriou (University of Groningen), Huang Huang (State Grid Nanjing Power Supply Company), Yue Li (State Key Laboratory of Novel Software Technology), and He Zhang (Nanjing University)	. 2163
Understanding Architectural Complexity, Maintenance Burden, and Developer SentimentA Large-Scale Study <i>Yuanfang Cai (Drexel University), Lanting He (Google LLC), Jun Qian</i> <i>(Google LLC), Yony Kochinski (Google LLC), Nan Zhang (Google LLC),</i> <i>Ciera Jaspan (Google LLC), and Antonio Bianco (Google LLC)</i>	. 2176

AI for Analysis 4

SE for AI with Quality 1

 A Tale of Two DL Cities: When Library Tests Meet Compiler	1
Iterative Generation of Adversarial Example for Deep Code Models	3
On the Mistaken Assumption of Interchangeable Deep Reinforcement Learning Implementations 2225	•
Rajdeep Singh Hundal (National University of Singapore, Singapore), Yan Xiao (Sun Yat-sen University, China), Xiaochun Cao (Sun Yat-sen University, China), Jin Song Dong (National University of Singapore, Singapore), and Manuel Rigger (National University of Singapore, Singapore)	
 μPRL: A Mutation Testing Pipeline for Deep Reinforcement Learning based on Real Faults	3
Testing and Understanding Deviation Behaviors in FHE-hardened Machine Learning Models 225 Yiteng Peng (The Hong Kong University of Science and Technology, Hong Kong, China), Daoyuan Wu (The Hong Kong University of Science and Technology, Hong Kong, China), Zhibo Liu (The Hong Kong University of Science and Technology, Hong Kong, China), Dongwei Xiao (The Hong Kong University of Science and Technology, Hong Kong, China), Zhenlan Ji (The Hong Kong University of Science and Technology, Hong Kong, China), Juergen Rahmel (HSBC, Hong Kong, China), and Shuai Wang (The Hong Kong University of Science and Technology, Hong Kong, China)	L
TraceFL: Interpretability-Driven Debugging in Federated Learning via Neuron Provenance 2264 Waris Gill (Virginia Tech), Ali Anwar (University of Minnesota), and Muhammad Ali Gulzar (Virginia Tech)	1

AI for SE 3

A First Look at Conventional Commits Classification	.2277
Qunhong Zeng (Beijing Institute of Technology, China), Yuxia Zhang	
(Beijing Institute of Technology, China), Zhiqing Oiu (Beijing	
Institute of Technology, China), and Hui Liu (Beijing Institute of	
Technology, China)	

ChatGPT Inaccuracy Mitigation during Technical Report Understanding: Are We There Yet? 2290 Salma Begum Tamanna (University of Calgary, Canada), Gias Uddin (York University, Canada), Song Wang (York University, Canada), Lan Xia (IBM, Canada), and Longyu Zhang (IBM, Canada)

Program Comprehension 4

Decoding the Issue Resolution Process in Practice via Issue Report Analysis: A Case Study of Firefox	
Preserving Privacy in Software Composition Analysis: A Study of Technical Solutions and Enhancements	
 UML is Back. Or is it? Investigating the Past, Present, and Future of UML in Open Source Software	
Understanding the Response to Open-Source Dependency Abandonment in the npm Ecosystem . 2355 Courtney Miller (Carnegie Mellon University, USA), Mahmoud Jahanshahi (University of Tennessee, USA), Audris Mockus (University of Tennessee, USA), Bogdan Vasilescu (Carnegie Mellon University, USA), and Christian Kästner (Carnegie Mellon University, USA)	
Understanding Compiler Bugs in Real Development	
Studying Programmers Without Programming: Investigating Expertise Using Resting State fMRI.2380 Zachary Karas (Vanderbilt University), Benjamin Gold (Vanderbilt University), Violet Zhou (University of Michigan), Noah Reardon (University of Michigan), Thad Polk (University of Michigan), Catie Chang (Vanderbilt University), and Yu Huang (Vanderbilt University)	

Testing and QA 5

Human and Social 4

User Experience

Unveiling the Energy Vampires: A Methodology for Debugging Software Energy Consumption .. 2406 Enrique Barba Roque (Delft University of Technology, The Netherlands), Luis Cruz (Delft University of Technology, The Netherlands), and Thomas Durieux (Delft University of Technology, The Netherlands)

Security and Analysis 3

Automated, Unsupervised, and Auto-parameterized Inference of Data Patterns and Anomaly Detection <i>Qiaolin Qin (Polytechnique Montreal), Heng Li (Polytechnique Montreal), Ettore Merlo (Polytechnique Montreal), and Maxime Lamothe</i> <i>(Polytechnique Montreal)</i>	2419
On Prescription or Off Prescription? An Empirical Study of Community-prescribed Security Configurations for Kubernetes	2432
Similar but Patched Code Considered Harmful The Impact of Similar but Patched Code on Recurring Vulnerability Detection and How to Remove Them Zixuan Tan (Zhejiang University), Jiayuan Zhou (Centre for Software Excellence, Huawei), Xing Hu (Zhejiang University), Shengyi Pan (Zhejiang University), Kui Liu (Huawei), and Xin Xia (Huawei)	2445
TIVER: Identifying Adaptive Versions of C/C++ Third-Party Open-Source Components Using a Code Clustering Technique	2458

Design and Architecture 2

An Exploratory Study on the Engineering of Security Features	2470
Kevin Hermann (Ruhr University Bochum), Sven Példszus (Ruhr University	
Bochum), Jan-Philipp Steghöfer (XITASO GmbH), and Thorsten Berger	
(Ruhr University Bochum, Chalmers University of Gothenburg)	

DesignRepair: Dual-Stream Design Guideline-Aware Frontend Repair with Large Language Models
Mingyue Yuan (University of New South Wales, CSIRO's Data61), Jieshan Chen (CSIRO's Data61, Technical University of Munich), Zhenchang Xing (CSIRO's Data61, Australian National University), Aaron Quigley (CSIRO's Data61, University of New South Wales), Yuyu Luo (The Hong Kong University of Science and Technology (Guangzhou)), Tianqi Luo (The Hong Kong University of Science and Technology (Guangzhou)), Gelareh Mohammadi (University of New South Wales), Qinghua Lu (CSIRO's Data61, University of New South Wales), and Liming Zhu (CSIRO's Data61, University of New South Wales)
 Fidelity of Cloud Emulators: The Imitation Game of Testing Cloud-based Software
Formally Verified Cloud-Scale Authorization2508Aleks Chakarov (Amazon), Jaco Geldenhuys (Amazon), Matthew Heck(Amazon), Michael Hicks (Amazon), Sam Huang (Amazon), Georges-AxelJaloyan (Amazon), Anjali Joshi (Amazon), K. Rustan M. Leino (Amazon),Mikael Mayer (Amazon), Sean McLaughlin (Amazon), Akhilesh Mritunjai(Amazon), Clement Pit-Claudel (Amazon), Sorawee Porncharoenwase(Amazon), Florian Rabe (Amazon), Marianna Rapoport (Amazon), GilesReger (Amazon), Cody Roux (Amazon), Neha Rungta (Amazon), RobinSalkeld (Amazon), Matthias Schlaipfer (Amazon), Daniel Schoepe(Amazon), Johanna Schwartzentruber (Amazon), Serdar Tasiran (Amazon),Aaron Tomb (Amazon), Emina Torlak (Amazon), Jean-Baptiste Tristan(Amazon), Lucas Wagner (Amazon), Michael W. Whalen (Amazon), RemyWillems (Amazon), Tongtong Xiang (Amazon), Tae Joon Byun (Meta),Joshua Cohen (Princeton University), Ruijie Fang (University of Texasat Austin), Junyoung Jang (McGill University), Jakob Rath (TU Wien),Hira Taqdees Syeda (University of Melbourne), Dominik Wagner (NTUSingapore), and Yongwei Yuan (Purdue University)
The Same Only Different: On Information Modality for Configuration Performance Analysis 2522 Hongyuan Liang (School of Computer Science and Engineering, University of Electronic Science and Technology of China, China), Yue Huang (School of Computer Science and Engineering, University of Electronic Science and Technology of China, China), and Tao Chen (School of Computer Science, University of Birmingham, United Kingdom)

AI for Analysis 5

 Aligning the Objective of LLM-based Program Repair
Revisiting Unnaturalness for Automated Program Repair in the Era of Large Language Models 2561 Aidan Z.H. Yang (Carnegie Mellon University), Sophia Kolak (Carnegie Mellon University), Vincent Hellendoorn (Carnegie Mellon University), Ruben Martins (Carnegie Mellon University), and Claire Le Goues (Carnegie Mellon University)
The Fact Selection Problem in LLM-Based Program Repair2574Nikhil Parasaram (University College London), Huijie Yan (University2574College London), Boyu Yang (University College London), Zineb Flahy(University College London), Abriele Qudsi (University CollegeLondon), Damian Ziaber (University College London), Earl Barr(University College London), and Sergey Mechtaev (Peking University)
Towards Understanding the Characteristics of Code Generation Errors Made by Large LanguageModels2587Zhijie Wang (University of Alberta, Canada), Zijie Zhou (University of111inois Urbana-Champaign, USA), Da Song (University of Alberta,Canada), Yuheng Huang (The University of Tokyo, Japan), Shengmai Chen(Purdue University, USA), Lei Ma (The University of Tokyo, Japan;University of Alberta, Canada), and Tianyi Zhang (Purdue University, USA)

AI for Security 2

(Socket, Inc), Mikola Lysenko (Socket, Inc), Feross Aboukhadijeh

(Socket, Inc), and Laurie Williams (North Carolina State University)

Magika: AI-Powered Content-Type Detection	3
Closing the Gap: A User Study on the Real-world Usefulness of AI-powered Vulnerability Detection & Repair in the IDE)
 Show Me Your Code! Kill Code Poisoning: A Lightweight Method Based on Code Naturalness 2663 Weisong Sun (College of Computing and Data Science, Nanyang Technological University, Singapore), Yuchen Chen (State Key Laboratory for Novel Software Technology, Nanjing University, China), Mengzhe Yuan (State Key Laboratory for Novel Software Technology, Nanjing University, China), Chunrong Fang (State Key Laboratory for Novel Software Technology, Nanjing University, China), Zhenpeng Chen (College of Computing and Data Science, Nanyang Technological University, Singapore), Chong Wang (College of Computing and Data Science, Nanyang Technological University, Singapore), Yang Liu (College of Computing and Data Science, Nanyang Technological University, Singapore), Baowen Xu (State Key Laboratory for Novel Software Technology, Nanjing University, China), and Zhenyu Chen (State Key Laboratory for Novel Software Technology, Nanjing University, China) 	3

AI for Testing and QA 6

Process

Testing and QA 6

Human and Social for AI

Intelligence and Computing, Tianjin University)

Mobile Software

 EP-Detector: Automatic Detection of Error-prone Operation Anomalies in Android Applications
Mobile Application Coverage: The 30% Curse and Ways Forward
The Design Smells Breaking the Boundary between Android Variants and AOSP
Scenario-Driven and Context-Aware Automated Accessibility Testing for Android Apps

 TacDroid: Detection of Illicit Apps through Hybrid Analysis of UI-based Transition Graphs279 Yanchen Lu (Zhejiang University, China), Hongyu Lin (Zhejiang University, China), Zehua He (Zhejiang University, China), Haitao Xu (Zhejiang University, China), Zhao Li (Hangzhou Yugu Technology, China), Shuai Hao (Old Dominion University, USA), Liu Wang (Beijing University of Posts and Telecommunications, China), Haoyu Wang (Huazhong University of Science and Technology, China), and Kui Ren (Zhejiang University, China) 	0
 PacDroid: A Pointer-Analysis-Centric Framework for Security Vulnerabilities in Android Apps)3

Security	and	QA
----------	-----	----

Nanjing University, China)

ROSA: Finding Backdoors with Fuzzing
Analyzing the Feasibility of Adopting Google's Nonce-Based CSP Solutions on Websites
 Early Detection of Performance Regressions by Bridging Local Performance Data and Architectural Models
Practical Object-Level Sanitizer With Aggregated Memory Access and Custom Allocator

AI for Security 3

GVI: Guided Vulnerability Imagination for Boosting Deep Vulnerability Detectors
Decoding Secret Memorization in Code LLMs Through Token-Level Characterization
Are We Learning the Right Features? A Framework for Evaluating DL-Based Software Vulnerability Detection Solutions
Boosting Static Resource Leak Detection via LLM-based Resource-Oriented Intention 2905 Inference 2905 Chong Wang (Fudan University), Jianan Liu (Fudan University), Xin Peng (Fudan University), Yang Liu (Nanyang Technological University), and Yiling Lou (Fudan University) Yang Liu (Nanyang Technological University), and
 Weakly-supervised Log-based Anomaly Detection with Inexact Labels via Multi-instance Learning

Quantum SE

When Quantum Meets Classical: Characterizing Hybrid Quantum-Classical Issues Discussed in	
Developer Forums	2931
Jake Zappin (William & Mary, Virginia, USA), Trevor Stalnaker (William	
& Mary, Virginia, USA), Oscar Chaparro (William & Mary, Virginia,	
& Mary, Virginia, USA), Oscar Chaparro (William & Mary, Virginia, USA), and Denys Poshyvanyk (William & Mary, Virginia, USA)	

SE for AI with Quality 3

Improved Detection and Diagnosis of Faults in Deep Neural Networks Using Hierarchical and Explainable Classification	2944
Sigma Jahan (Dalhousie University, Canada), Mehil B Shah (Dalhousie University, Canada), Parvez Mahbub (Dalhousie University, Canada), and	-/11
University, Canada), Parvez Mahbub (Dalhousie University, Canada), and	
Mohammad Masudur Rahman (Dalhousie University, Canada)	
C C	

Lightweight Concolic Testing via Path-Condition Synthesis for Deep Learning Libraries
Mock Deep Testing: Toward Separate Development of Data and Models for Deep Learning 2970 Ruchira Manke (Tulane University, USA), Mohammad Wardat (Oakland University, USA), Foutse Khomh (Polytechnique Montréal, Canada), and Hridesh Rajan (Tulane University, USA)
RUG: Turbo LLM for Rust Unit Test Generation

Blockchain

An Empirical Study of Proxy Smart Contracts at the Ethereum Ecosystem Scale	6
Demystifying and Detecting Cryptographic Defects in Ethereum Smart Contracts	9
Chord: Towards a Unified Detection of Blockchain Transaction Parallelism Bugs	2
Definition and Detection of Centralization Defects in Smart Contracts	5
Fork State-Aware Differential Fuzzing for Blockchain Consensus Implementations	8

Code Cloning in Solidity Smart Contracts: Prevalence, Evolution, and Impact on Development.... 3060 Ran Mo (Central China Normal University), Haopeng Song (Central China Normal University), Wei Ding (Central China Normal University), and Chaochao Wu (Central China Normal University)

Poster

 Pattern-based Generation and Adaptation of Quantum Workflows	'2
 BSan: A Powerful Identifier-Based Hardware-Independent Memory Error Detector for COTS Binaries	
RustAssistant: Using LLMs to Fix Compilation Errors in Rust Code	7
 Your Fix Is My Exploit: Enabling Comprehensive DL Library API Fuzzing with Large Language Models	0
 BDefects4NN: A Backdoor Defect Database for Controlled Localization Studies in Neural Networks	.3

Leveraging Propagated Infection to Crossfire Mutants	. 3136
Hang Du (University of California, Irvine), Vijay Krishna Palepu	
(Microsoft, Silicon Valley Campus), and James A. Jones (University of	
California, Irvine)	

Author Index