PROCEEDINGS OF SPIE

Eighth International Workshop on Specialty Optical Fibers and Their Applications (WSOF 2025)

Pavel Peterka Kyriacos Kalli John Ballato Alexis Mendez Editors

7–10 April 2025 Prague, Czech Republic

Organized by

Institute of Photonics and Electronics of the Czech Academy of Sciences (Czech Republic)

Sponsored by

SG Controls and Fiber Optics Center (United States) • Rosendahl Nextrom (Finland) NYFORS (Sweden) • Exail (France) • Fibercore (United Kingdom) • Optogear (Finland) nLIGHT (United States) • nLIGHT (Finland) • NorthLab Photonics (Sweden) • Arnold Group (Germany)

Technical Sponsors
Czech Academy of Sciences (Czech Republic)
SPIE
City of Prague (Czech Republic)
Czech Optical Cluster (Czech Republic)

Published by SPIE

Volume 13522

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings: Author(s), "Title of Paper," in Eighth International Workshop on Specialty Optical Fibers and Their Applications (WSOF 2025), edited by Pavel Peterka, Kyriacos Kalli, John Ballato, Alexis Mendez, Proc. of SPIE 13522, Seven-digit Article CID Number (DD/MM/YYYY); (DOI URL).

ISSN: 0277-786X

ISSN: 1996-756X (electronic)

ISBN: 9781510688407

ISBN: 9781510688414 (electronic)

Published by

SPIE

P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time)

31 IL.OIG

Copyright © 2025 Society of Photo-Optical Instrumentation Engineers (SPIE).

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of fees. To obtain permission to use and share articles in this volume, visit Copyright Clearance Center at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: A unique citation identifier (CID) number is assigned to each article in the Proceedings of SPIE at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

ix Conference Committee xiii Introduction

	FIBER FABRICATION
13522 06	Graded index active fiber for high-power laser application (Invited Paper) [13522-1]
13522 07	Index-matching of individual glass preforms: high-volume synthesis and high-precision refractive index measurements [13522-2]
13522 09	Thinly coated hollow-core fibers: how thin can we go? [13522-5]
	BIOMEDICAL APPLICATIONS
13522 OB	Meta-fibers: merging nanophotonics and fiber optics via 3D nanoprinting for taylored beam manipulation (Invited Paper) [13522-6]
13522 0C	Deep brain temperature sensing using polymer fiber Bragg grating implants [13522-7]
13522 0D	Brain and spinal cord interrogation with multimaterial bidirectional interfaces based on polymer optical fibers [13522-8]
13522 OF	Fiber optic biosensor utilizing magneto-optic effect in hollow-core anti-resonant optic fiber [13522-10]
	FIBER LASERS I
13522 OG	Influence of core codopants and components on laser properties of high-power holmium-doped silica all-fiber lasers (Invited Paper) [13522-17]
13522 OH	Highly-doped optical fibers for high-efficiency holmium lasers [13522-18]
13522 01	BaF ₂ nanoparticle-based erbium doped fibers [13522-19]

	NONLINEAR EFFECTS
13522 OJ	Towards diffraction limited output via wavefront shaping in a record peak power, single-frequency, pulsed 1.5µm multimode fibre amplifier (Invited Paper) [13522-20]
13522 OL	10dB Brillouin gain in silica nanofibers [13522-22]
	ADVANCED TECHNIQUES
13522 ON	A review of intrinsically low nonlinearity optical fibers [13522-24]
13522 OP	Advanced plasma deposition and post-treatment techniques for creating all-silica optical fibers with tailored properties [13522-26]
13522 0Q	Specialty capillaries and multi-core optical fibres for applications in imaging and multi-modal spectroscopy [13522-27]
	ADVANCES IN NON-SILICA FIBERS
13522 OS	Flexible fiber-based implantable neurophotonic interfaces with enhanced illumination volume [13522-29]
13522 OT	Dy³+-doped phosphate glass fibers for yellow lasers [13522-30]
	HOLLOW-CORE FIBERS
13522 OV	Fabrication approach for aligned, n-core, multi-core fibers [13522-32]
13522 0W	Simulation of gas flow and its effect on the optical properties of nested antiresonant nodeless hollow-core fibres [13522-33]
13522 0X	Gas dynamics during fabrication of hollow-core optical fibers [13522-34]
13522 0Y	Laser beam mode shaper with heptagonal core anti-resonant hollow-core fiber [13522-35]
	FIBER LASERS II
13522 10	Simplifying multicore fiber laser systems (Invited Paper) [13522-11]
13522 11	Fabrication of an antiresonant hollow-core fibre for mid-infrared nonlinear Raman conversion in nitrogen pumped at 2µm (Best Student Paper) [13522-12]

13522 12	Further power scaling of diffraction-limited ytterbium fiber laser ~980nm [13522-13]
13522 13	Interactive, on-line software for Judd-Ofelt analysis: introduction and demonstration [13522-14]
13522 14	Single-mode operation of a pedestal-free 25µm core double-clad Tm-doped fiber with >50% efficiency for 2µm applications [13522-15]
13522 15	Multiring optical fibers doped with Tm $^{3+}$ and Ho $^{3+}$ for broadband profiled emission near 2 μ m [13522-16]
	SPECIALTY FIBERS FOR QUANTUM APPLICATIONS
13522 19	Multi-node quantum key distribution network using existing underground optical fibre infrastructure (Invited Paper) [13522-109]
	FIBER SENSING I
13522 1C	Response of femtosecond laser-written fiber Bragg gratings during y-radiation [13522-42]
13522 1D	Advancements in fused silica step-index fibers: a comparative study of STU-D and STU preforms in attenuation and radiation resistance [13522-43]
13522 1F	Fusion splice-embedding of diamonds in optical fibers for magnetic field sensing [13522-45]
	FIBER SENSING II
13522 1J	Enhancing distributed fiber sensing using novel nanocomposite-coated optical fibers [13522-49]
13522 1K	Evolution of monolithic distributed fibre optic sensors [13522-50]
13522 1L	Enhanced performance of Vernier multicore fiber sensors [13522-51]
	COMPONENTS AND DEVICES
13522 1M	Specialty fiber enabled broadband amplifiers (Invited Paper) [13522-108]
13522 1N	Specialty optical fiber processing [13522-52]
13522 1P	Improving the power handling capabilities of laser-machined, microstructured cladding light strippers through homogeneous stripping [13522-54]

13522 1Q Multiple higher-order mode generation using all-fibre structures [13522-55]

 $13522\ 1R \qquad \textbf{Splicing of mid-IR fluoride fibers using filament heating}\ [13522-56]$

POSTER SESSION

	POSTER SESSION
13522 18	Design of thulium-doped fiber with microstructured core and air cladding [13522-57]
13522 1W	Utilizing 3.6µm mid-IR fibre lasers beams for thermal lensing compensation in LIGO detectors [13522-62]
13522 1X	A novel partial discharge sensor based on Ce/Tb co-doped fluorescent silica fiber [13522-63]
13522 1Y	Technological approaches towards a monolithic visible Pr³+-doped fluoride glass fiber laser [13522-64]
13522 1Z	Study on doping of specialty silica optical fibers for Tm-fiber lasers and amplifiers with antimony oxide [13522-66]
13522 20	Thermal effects on the Brillouin frequency shift in strained optical silica nanofibers [13522-67]
13522 21	Tapering 6LP few-mode fiber for multi-parameter sensing [13522-68]
13522 22	Fiber-based plasmonic microreactor for flow chemistry [13522-69]
13522 23	Optimizing differential mode delay and crosstalk in nested anti-resonant node-less hollow-core fibers for mode-division multiplexing [13522-70]
13522 25	Prototype polymer optical fibre sensors for reinforced concrete monitoring [13522-72]
13522 26	On-demand tapered optical fiber [13522-74]
13522 27	Hybrid anti-resonant negative-curvature optical fibers [13522-75]
13522 28	Analysis of transmitted gamma spectrum upon scintillator shading [13522-76]
13522 29	Towards the engineering of nanoparticles in optical fibers at the micrometer scale [13522-77]
13522 2A	Effect of drawing process on optical properties of dual-wavelength fiber lasers [13522-79]
13522 2B	The effect of one-dimensional core structure on thulium fiber laser properties [13522-80]

13522 2C	Shaped pulse-based high dynamic range optical time domain reflectometry for hollow-core fiber characterization [13522-81]
13522 2D	Pressure and refractive index sensing using a perfluorinated gradient index multimode speckle sensor [13522-82]
13522 2E	ZBLAN fiber laser configuration for acetone pollutant sensing [13522-83]
13522 2F	High power Yb-free Er-doped cladding pumped fiber amplifier for L-band operation [13522-85]
13522 2G	Optical fibers doped with nitrogen-vacancy submicron diamonds as magnetic sensors [13522-86]
13522 2H	Defining effective bending radius and stress-optic coefficient values using bend loss measurements [13522-87]
13522 21	Nondestructive and spatially resolved refractive index distribution analyses along specialty optical fibers $[13522\text{-}88]$
13522 2J	ZnO-doped preform preparation approaches towards radioluminescent optical fibers (Best Student Poster) [13522-89]
13522 2K	Quantum efficiency and background loss in low thulium concentration silica fibres [13522-90]
13522 2L	Thulium-doped fiber laser with longitudinally segmented active fiber (Best Student Poster) [13522-91]
13522 2M	The effect of ion pair dynamics on unsaturable absorption in holmium doped fibers [13522-92]
13522 2N	Improved surface treatment for integration of fiber Bragg sensors in difficult environment $\left[13522\text{-}93\right]$
13522 2P	Spectroscopy of thulium-doped fibers with depressed cladding for sources emitting around 1700nm $[13522\text{-}96]$
13522 2Q	Femtosecond laser inscription of FBG in novel multifunctional fibre [13522-97]
13522 2R	Comparative analysis of radiation-induced attenuation in PMMA and pure silica optical fibres for high-dose of ionising radiation [13522-98]
13522 2S	Controlling the optical performance of a simply end-capped 4-tube hollow core fiber using selective gas pressure-controlled phase matching [13522-99]
13522 2T	Minimising interconnection losses in hollow-core fibres using femtosecond laser-modified single-mode fibres [13522-100]
13522 2U	Birefringent-filter-assisted actively Q-switched tuneable erbium-doped fibre ring laser [13522-101]

13522 2V	Implementation of yttrium aluminium garnet nanoparticles in active optical fibers by nanoparticle deposition approach [13522-102]
13522 2W	Magnetic field endoscopy using optical fibers and nitrogen-vacancy diamonds [13522-103]
13522 2X	Application of a quasi-continuous wave thulium fiber laser in human urinary stone fragmentation [13522-104]
13522 2Z	Rubber-integrated NP-doped optical fiber for distributed displacement sensing [13522-106]