PROCEEDINGS OF SPIE

Digital Optical Technologies 2025

Bernard C. Kress Jürgen W. Czarske Editors

23–26 June 2025 Munich, Germany

Sponsored and Published by SPIE

Volume 13573

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings: Author(s), "Title of Paper," in *Digital Optical Technologies 2025*, edited by Bernard C. Kress, Jürgen W. Czarske, Proc. of SPIE 13573, Seven-digit Article CID Number (DD/MM/YYYY); (DOI URL).

ISSN: 0277-786X

ISSN: 1996-756X (electronic)

ISBN: 9781510690547

ISBN: 9781510690554 (electronic)

Published by

SPIE

P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time)

SPIE.ora

Copyright © 2025 Society of Photo-Optical Instrumentation Engineers (SPIE).

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of fees. To obtain permission to use and share articles in this volume, visit Copyright Clearance Center at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: A unique citation identifier (CID) number is assigned to each article in the Proceedings of SPIE at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

vii Conference Committee

	WAVEFRONT SHAPING BY DIGITAL OPTICS
13573 02	Overcoming catastrophic forgetting by rehearsal method in imaging through scattering media by deep learning [13573-5]
	HOLOGRAPHIC IMAGING AND DISPLAY
13573 03	Dual-path holographic laser rendering for fist-sized volumetric graphics in physical space [13573-7]
13573 04	Improved far field holograms using spatial light modulators and camera-in-the-loop optimization [13573-9]
13573 05	Compact and effective zero-order noise suppression in Fresnel holography using a lens and lens compensation $[13573-10]$
	AI-AIDED DESIGN TECHNIQUES FOR DIGITAL OPTICS
13573 06	Nonlinear digital holography for light-speed correction of structured light (Invited Paper) [13573-34]
13573 07	Optimized scythe-shaped chiroptical metasurface for biosensing application [13573-64]
	DIGITAL OPTICS FOR AR/VR/MR I
13573 08	New high-current WUXGA microLED microdisplay backplane derived from previous OLED microdisplay platform [13573-17]
	FABRICATION AND METROLOGY USING DIGITAL OPTICS
13573 09	Metrology challenges of digital optical technologies [13573-21]
13573 0A	Introducing innovative materials for advanced manufacturing of optical and photonic devices [13573-24]

	DIGITAL OPTICS FOR AR/VR/MR II
13573 OB	A virtual reality approach to interactive physics case study on the double-slit experiment [13573-26]
13573 0C	Optical sensor positioning for eye-tracking with numerically efficient raytracing models [13573-27]
	ADAPTIVE OPTICS BY DIGITAL TECHNOLOGIES
13573 OE	Adaptive optics-based covert communications in strong atmospheric turbulence regime (Invited Paper) [13573-32]
	DYNAMIC DIGITAL OPTICS
13573 OF	Scattering-resistant ghost imaging by direct-deconvolution [13573-37]
13573 0G	Quantum-driven optical security: a hybrid experimental-computational framework for unclonable authentication $[1357338]$
	METROLOGY, DISPLAYS AND OPTICAL COMPONENTS FOR DIGITAL TECHNOLOGIES
13573 OH	Wide-field polarization measurement of the sky using a fisheye lens [13573-39]
13573 01	Time-division multiview 3D display based on hyperboloidal mirror reflection [13573-40]
13573 OJ	Local and global calibration of liquid crystal spatial light modulators using a single interferometric pattern [13573-42]
13573 OK	Phase stabilization and calibration techniques for high-fidelity integrated photonic processors [13573-44]
	COMPUTATIONAL TECHNIQUES FOR DIGITAL OPTICS
13573 OL	Systematic design method of optical system based on off-the-shelf lenses [13573-45]
13573 OM	A large-scale photonic design pipeline for interconnect routing [13573-48]
	POSTER SESSION
13573 ON	Mathematical aspects in simulating Lissajous laser scanning [13573-51]

13573 00	Using simulation-based inference (SBI) for optical imaging [13573-52]
13573 OP	Investigations of vibration regimes of optical choppers [13573-53]
13573 0Q	A deep learning approach for the prediction of process parameters in the additive manufacturing of microlenses [13573-54]
13573 OR	Evaluating machine learning with simulated Lissajous scans for fast object recognition and rotation estimation [13573-55]
13573 OS	Compact multichannel imaging system with wide FOV and 4x optical magnification [13573-56]
13573 OT	Characterization of pulsed ultraviolet laser micromachining operation for rapid prototyping of microfluidic devices [13573-57]
13573 OU	Microresonator-enhanced graphene-based electro-optic modulator with near-zero power consumption [13573-59]
13573 OV	Predictive analysis of manufacturing and long-term variations in a laser combining system [13573-60]
13573 OW	A compact wearable device for correcting ocular aberrations [13573-61]
13573 0X	Generating and sensing synthetic parasitic data of lymphatic filariasis using diffusion models and generative adversarial networks [13573-62]
13573 OY	Nonlinear holography for efficient frequency conversion of structured light [13573-63]
13573 OZ	The ore content estimation in the mineral processing plant with the aid of the ML process: from classification to measurement [13573-66]