PROCEEDINGS OF SPIE

Fourth Conference on Biomedical Photonics and Cross-Fusion (BPC 2025)

Junle Qu Xunbin Wei Editors

27–29 June 2025 Shanghai, China

Organized by Chinese Laser Press

Published by SPIE

Volume 13785

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings: Author(s), "Title of Paper," in Fourth Conference on Biomedical Photonics and Cross-Fusion (BPC 2025), edited by Junle Qu, Xunbin Wei, Proc. of SPIE 13785, Seven-digit Article CID Number (DD/MM/YYYY); (DOI URL).

ISSN: 0277-786X

ISSN: 1996-756X (electronic)

ISBN: 9781510694491

ISBN: 9781510694507 (electronic)

Published by

SPIE

P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time) SPIE.org

SFIE.OIG

Copyright © 2025 Society of Photo-Optical Instrumentation Engineers (SPIE).

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of fees. To obtain permission to use and share articles in this volume, visit Copyright Clearance Center at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: A unique citation identifier (CID) number is assigned to each article in the Proceedings of SPIE at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

v Conference Committee

FOURTH CONFERENCE ON BIOMEDICAL PHOTONICS AND CROSS-FUSION (BPC 2025)

	FOURTH CONFERENCE ON BIOMEDICAL PHOTONICS AND CROSS-FUSION (BPC 2025)
13785 02	Model-based azimuth misalignment mitigation in polarimetric imaging of layered birefringent structures [13785-2]
13785 03	Optimized self-registration method for pseudo-depolarization calibration in Mueller matrix imaging [13785-3]
13785 04	Complex spatial illumination optimization method for backscattering Mueller matrix polarized light tissue imaging [13785-4]
13785 05	Rapid, label-free diagnosis of thyroid cancer using SHG imaging [13785-5]
13785 06	Blood oxygen calibration in deep-tissue photoacoustic tomography based on prior information [13785-12]
13785 07	Multi-stencil fast-marching-based method for three-dimensional image reconstruction in ultrasound computed tomography [13785-13]
13785 08	Dual-angle Mueller matrix polarimetry with digital filtering for single-cell analysis [13785-14]
13785 09	Label-free, rapid diagnosis of pancreatic cancer using multiphoton imaging [13785-15]
13785 0A	Multiphoton-microscopy-based imaging analysis of lung adenocarcinoma [13785-16]
13785 OB	Label-free melanoma boundary identification: a multiphoton-imaging-based approach [13785-18]
13785 OC	Dynamic monitoring of mitotic cell rounding based on Fourier ptychographic microscopy [13785-20]
13785 0D	Deconvolution-based compensation of ultrasonic transducer impulse response in photoacoustic tomography [13785-21]
13785 OE	A multi-grid method for joint reconstruction of initial pressure and speed of sound in photoacoustic tomography [13785-23]
13785 OF	Rapid mapping of fiber network reorganization by multiphoton imaging reveals histopathological signatures in unprocessed lung tumor tissue [13785-26]
13785 0G	Portable dual-modal infrared-RGB imaging for automated classification of skin lesions [13785-28]

13785 OH	Al-assisted cervical lesions assessment and classification based on optical colposcopy [13785-32]
13785 01	Predicting the efficacy of neoadjuvant chemotherapy for breast cancer based on dynamic diffuse spectral imaging [13785-33]
13785 OJ	Fractional-Fourier-transform-based Michelson interferometric measurement [13785-38]
13785 OK	Visualizing deuterated lipids via stimulated Raman scattering microscopy [13785-39]
13785 OL	Monitoring the responses of Haematococcus pluvialis under different culture conditions by using FLIM [13785-41]
13785 OM	Al-based image analysis and detection of microalgae [13785-42]