PROCEEDINGS OF SPIE

Infrared Remote Sensing and Instrumentation XXXIII

Marija Strojnik Jörn Helbert Editors

5 August 2025 San Diego, California, United States

Sponsored and Published by SPIE

Volume 13612

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings: Author(s), "Title of Paper," in *Infrared Remote Sensing and Instrumentation XXXIII*, edited by Marija Strojnik, Jörn Helbert, Proc. of SPIE 13612, Seven-digit Article CID Number (DD/MM/YYYY); (DOI URL).

ISSN: 0277-786X

ISSN: 1996-756X (electronic)

ISBN: 9781510691322

ISBN: 9781510691339 (electronic)

Published by

SPIE

P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time)

SPIE.ora

Copyright © 2025 Society of Photo-Optical Instrumentation Engineers (SPIE).

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of fees. To obtain permission to use and share articles in this volume, visit Copyright Clearance Center at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: A unique citation identifier (CID) number is assigned to each article in the Proceedings of SPIE at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

v Conference Committee

	OPTICAL ENGINEERING PLENARY
13612 02	The many challenges of planetary remote sensing (and why it's totally worth it!) (Plenary Paper) [13612-500]
	EXPLORATION IN THE FUTURE
13612 03	In situ chemical sensing methods and air quality monitoring in the atmospheric boundary layer using small uncrewed aerial systems (Invited Paper) [13612-2]
13612 04	Research on key technologies of quantum image enhancement data processor [13612-3]
	TECHNOLOGIES OF THE FUTURE
13612 05	A novel method for the analysis of polygon mirror-based laser scanners (Invited Paper) [13612-4]
13612 06	Cryogenic gas cell for infrared space instrumentation [13612-5]
13612 07	Opto-mechanical properties of monocrystalline germanium [13612-6]
13612 08	BRDF and point source transmittance (PST) measurements: review [13612-7]
13612 09	Measuring BRDF small-angle scattering: new concepts using both power spectrum and nondiffraction beams [13612-20]
	SELECT TECHNOLOGIES
13612 0A	Integration of vibration sensing in time transfer infrastructure (Invited Paper) [13612-8]
13612 OB	Compact MEMS-based Fabry-Perot interferometers for space applications (Invited Paper) [13612-9]

SOLAR SYSTEM EXPLORATION

13612 0C	UV to IR spaceborne spectroscopic exploration of planets with European lead missions: achievements, results, future programs, and scientific goals (Invited Paper) [13612-12]
13612 0D	The instrumentation suite at the Planetary Laboratories department (PLL) of the Institute of Space Research - DLR [13612-13]
13612 OE	The Sample Analysis Laboratory (SAL) at the German Aerospace Center (DLR) Berlin: a cutting-edge laboratory for extraterrestrial material analysis [13612-14]
13612 OF	Measuring emissivity in the field and the lab with an emulator of the VERITAS Venus Emissivity Mapper (VEM) [13612-15]
13612 0G	The Venus Emissivity Mapper (VEM): instrument science performance requirements derived from VERITAS and EnVision [13612-16]
	POSTER SESSION
13612 OH	Research on the key technology of quantum Chinese medicine imaging analyzer based on hyperspectral imaging [13612-18]
13612 0	
10012 01	VIS-NIR spectral characterization of mistletoe leaves by diffuse reflectance spectroscopy [13612-19]
12612 OJ	
	[13612-19] Nontraditional oxide glass gain media derived from containerless processing techniques
12612 OJ	[13612-19] Nontraditional oxide glass gain media derived from containerless processing techniques [13612-21] Dynamic phase-shift modulation in a Mach-Zehnder interferometer using Risley prisms
12612 OJ 13612 OK	[13612-19] Nontraditional oxide glass gain media derived from containerless processing techniques [13612-21] Dynamic phase-shift modulation in a Mach-Zehnder interferometer using Risley prisms [13612-22] Signal-to-noise ratio measurement in a Mach-Zehnder interferometer using Risley prisms