

Engaging Students in Physical Chemistry, Volume 2

Printed from e-media with permission by:

Curran Associates, Inc.
57 Morehouse Lane
Red Hook, NY 12571

Email: curran@proceedings.com
Web: www.proceedings.com

CURRAN ASSOCIATES INC.
proceedings
.com

The paper used in this publication meets the minimum requirements of American National Standard for Information Sciences—Permanence of Paper for Printed Library Materials, ANSI Z39.48n1984. | ISBN 9798331330071 (pod)

Copyright © 2025 American Chemical Society

All Rights Reserved. Reprographic copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Act is allowed for internal use only, provided that a per-chapter fee of \$40.25 plus \$0.75 per page is paid to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. Republication or reproduction for sale of pages in this book is permitted only under license from ACS. Direct these and other permission requests to ACS Copyright Office, Publications Division, 1155 16th Street, N.W., Washington, DC 20036.

The citation of trade names and/or names of manufacturers in this publication is not to be construed as an endorsement or as approval by ACS of the commercial products or services referenced herein; nor should the mere reference herein to any drawing, specification, chemical process, or other data be regarded as a license or as a conveyance of any right or permission to the holder, reader, or any other person or corporation, to manufacture, reproduce, use, or sell any patented invention or copyrighted work that may in any way be related thereto. Registered names, trademarks, etc., used in this publication, even without specific indication thereof, are not to be considered unprotected by law.

PRINTED IN THE UNITED STATES OF AMERICA

Contents

Preface	xi
---------------	----

Beyond Content: Expanding the Horizons of What Is Important

1. A CURE-like Experience in the Physical Chemistry Laboratory: Adsorption for Environmental Remediation is a Flexible Framework for Promoting Student Engagement.....	3
Kimberly A. Lawler-Sagarin	
2. Flipped Classroom in Physical Chemistry: Class Design, In-Class Activities, and Effectiveness.....	13
Feier Hou	
3. Design and Implementation of the Math for PChem Foundation Modules.....	27
Ashley Driesbach, Gillian S. Camacho, Samuel C. Mahler, and Linlin Jensen	
4. Equation Mapping: The Adaptation of Concept Mapping to the Physical Chemistry Classroom.....	41
Lisa M. Goss	
5. Leveraging Physical Chemistry for Student Growth and Belonging.....	51
Kana Takematsu	
6. First Impressions Matter: How to Write a Learning-Focused Syllabus for Physical Chemistry.....	65
Julie Donnelly and Kurt Winkelmann	
7. Specifications Grading in Physical Chemistry Lecture Courses: Catalyzing Student Success and Finding the Right Equilibrium	81
Kristina D. Closser and Morgan J. Hawker	
8. Two Courses in One Room: Teaching Physical Chemistry for Both B.S. and B.A. Degrees	97
Benjamin J. McFarland	
9. Engaging Students in a Sequence of Upper-Level Physical Chemistry Laboratory Courses to Finalize Their Undergraduate Education	109
Rose M. Baker and Bratoljub H. Milosavljevic	

Increasing Importance of Computation

10. Teaching Thermodynamics with Geometry and Computational Guided Inquiry	131
Timothy L. Guasco, William C. Pfalzgraff, Grace Y. Stokes, Filippo Posta, and Steven P. Neshyba	
11. Jupyter Notebooks in the Colab Environment: An Accessible Approach for Incorporating Python Coding in Teaching and Learning Quantum Mechanics and Spectroscopy	157
Katharine Moore Tibbets and Sally Hunnicutt	
12. Using Jupyter Notebooks in a Guided Inquiry Laboratory Environment	175
Melissa S. Reeves, Rob Whitnell, H. Laine Berghout, Timothy Brewer, Hanae Haouari, Sally Hunnicutt, and Jessica C. Johnston	
13. Full Integration of Python into the Physical Chemistry (Thermodynamics and Kinetics) Curriculum.....	189
Allyn J. Schoeffler	
14. Incorporating R Programming into the Physical Chemistry Laboratory.....	209
Angela Perry, Wilson Hetrick, and Benjamin P. Wilson	
15. Utilizing Computational Software to Streamline Data Analysis and Reinforce Chemical Concepts	225
Jefferson E. Bates and B. Lauren Woods	
16. Teaching Chemists to Code with Diversity in Mind: A Pedagogy of Belonging for End-User Conditions.....	247
Marie van Staveren	

Continued Creation of New Content Activities

17. Modernizing Physical Chemistry: Integrating Computational Chemistry, the Finite Well, and Python Data Visualization in the Particle-in-a-Box Experiment	261
Prajay Patel	
18. Using PGOPHER, HITRAN, and <i>Ab Initio</i> Tools to Stimulate Student Interest in Hydrogen Halide Spectroscopy.....	279
Roderick M. Macrae	
19. Symmetry and Spectroscopy: Development of a Guided Inquiry Laboratory Activity	309
Craig M. Teague	
20. Utilizing Time-Resolved Nanosecond Transient Absorption Spectroscopy to Investigate Zinc-Tetraphenylporphyrin Dynamics.....	321
Jenée D. Cyran, Jens Küchenmeister, Leo Pöttinger, Jonathan Döring, Brian McClain, and Oliviero Andreussi	

21. Using DFT-B3LYP Calculations to Explore Topics in Physical Chemistry	329
Thomas C. DeVore, Jun Yin, and Patrick Randolph	
22. Understanding Chemical Equilibria: A Python Tool for Modeling Protonation State Relative Concentrations	357
Nathan Tam, Daniel Abramov, Lauren Conrad, and Lorena Tribe	
23. Physical Chemistry Concepts Introduced into the Chemistry Curriculum Using WebMO	371
George C. Shields and William F. Polik	
24. Implementing Orbital Coupling Diagrams in Physical Chemistry Courses: A Glyph-Based Iconography for Atoms, Bonding, and Molecules	441
David E. Woon	

A Growing Emphasis on Scientific Communication

25. Student Poster Project: An Inexpensive Way to Bring Modern Research into a Physical Chemistry Laboratory Course	469
Jennifer Monahan	
26. Using Phenomena in Teaching Physical Chemistry: Designing a Course With Student Learning in Mind	485
Jodye I. Selco	
27. Using Writing to Engage Students and Diversify Activities in Physical Chemistry.....	497
Arwyn L. E. Smalley	
28. Developing Scientific Writing Abilities through Scaled Guided and Active Learning Cycles: A Template and Example in the Physical Chemistry Laboratory	509
Emma Johnson and Eugene Wagner	
29. Customized Video Modules to Enhance Student Learning in Physical Chemistry Laboratory Courses	531
Soon-Mi Lim	
Editors' Biographies	543

Indexes

Author Index.....	547
Subject Index.....	549